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1 Introduction

Sunlight is said to be the best of

disinfectants; electric light the most

efficient policeman.

Louis Brandeis

Scholars, policymakers, and private businesses increasingly report simple “report

cards” summarizing estimates of the quality or conduct of particular individuals, or-

ganizations, or places. Recent examples include assessments of the quality of colleges

(Chetty et al., 2017), K-12 schools (Bergman, Chan and Kapor, 2020; Angrist et al.,

2021), teachers (Bergman and Hill, 2018; Pope, 2019), healthcare providers (Brook et al.,

2002; Pope, 2009; Kolstad, 2013), and neighborhoods (Chetty and Hendren, 2018; Chetty

et al., 2018a). It is natural for readers to use such reports not only to assess the conduct

of particular organizations but also to make comparisons between them. This “league

table mentality,” as Gu and Koenker (2020) have termed the phenomenon, forms a core

element of the demand for report cards but is rarely incorporated directly into their

construction.

This paper develops new empirical Bayes (EB) methods for grading units based upon

noisy measures of conduct or performance while maintaining statistical guarantees on the

reliability of the resulting grades. The information content of the grades is quantified by

Kendall’s τ measure of correlation (Kendall, 1938) between the implied (partial) ordering

of units and the true ranking of latent conduct parameters. The reliability of the report

card grades is quantified by an analogue of the False Discovery Rate (Benjamini and

Hochberg, 1995; Storey, 2002) that we term the Discordance Rate (DR). The DR gives the

chances that the relative performance of a randomly selected pair of units is misordered.

We show that the tradeoff between these notions of information and reliability emerges

naturally from a series of pairwise decisions in which an analyst guesses the ordering

of parameters for each pair of units. When presented with multiple gambles of this

form, the analyst faces an optimization problem subject to logical transitivity constraints

requiring all pairwise comparisons to be consistent with a coherent underlying ranking. A

parameter λ trades off the gains of correctly ranking pairs against the costs of misordering

them. When λ = 1, it is optimal to assign each unit a unique grade to maximize the

expected rank correlation with the true performance levels. These maximally-informative

grades turn out to be closely connected to classic proposals for preference aggregation

via pairwise elections found in the social choice literature (Borda, 1784; Condorcet, 1785;

Young and Levenglick, 1978; Young, 1986), with the posterior probability that one unit

outperforms another serving the role of a vote share.

When λ < 1 it is only optimal to strictly rank units that can be distinguished with
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sufficiently high posterior probability, potentially yielding ties and therefore a low number

of distinct grades. These coarse grades protect against misinterpretation at the cost of

losing information, thereby reducing correlation with the true ranks. We show that setting

λ < 1 can be motivated by a scientific reporting problem where a share of the audience

is already informed about how the units should be ordered and an incorrect report will

mislead them. Scientific communication is, of course, generally aided by transparency

(Andrews and Shapiro, 2021) and we develop a reporting rubric that simultaneously

communicates the “Condorcet ranks” that emerge when λ = 1 alongside the coarse grades

associated with a chosen λ < 1. The proposed report card also summarizes information

on performance levels, which can be especially important when assessing compliance with

regulatory standards (Kline, 2023). Routines for implementing our EB grading procedure

are available online at https://github.com/ekrose/drrank.

We use these methods to construct a discrimination report card that summarizes

experimental evidence regarding the biases of a broad collection of Fortune 500 companies.

Our analysis leverages a massive resume correspondence experiment, previously analyzed

in Kline, Rose and Walters (2022), that sent up to 1,000 job applications to each of 108

firms, whose identities we disclose for the first time. These companies are familiar to

most Americans and their conduct plausibly exerts a large influence on the U.S. labor

market. The experiment conveyed race and gender to employers by randomly assigning

distinctive names. Disparities in contact rates across race and gender categories provide

noisy estimates of discriminatory conduct for each firm. To link our analysis to our earlier

theory on ranking decisions, we use these estimates to construct empirically-grounded

prior beliefs via empirical Bayes deconvolution methods and compute corresponding EB

estimates of each firm’s absolute and relative conduct.

As an introductory illustration of our method, we rank the contact rates of the first

names used in the correspondence experiment. A non-parametric deconvolution suggests

that name-specific contact rates cluster around two distinct values capturing mean contact

rates for distinctively white and Black names. Weighing the loss from incorrectly ordering

a pair of names four times as heavily as the gain from correctly ordering them, our ranking

procedure stratifies the names into two groups with distinct grades. These grades strongly

predict a name’s nominal race but not its sex. Allowing additional grades has little impact

on these correlations, suggesting that our ranking procedure is suitable for recovering

missing labels with a low-dimensional structure.

Proceeding to our primary application of ranking firm biases against Black applicants,

we compute optimal grades for a sample of 97 firms subject to the same preferences over

correct and incorrect rankings used for first name pairs. In a single pairwise gamble,

these preferences (which correspond to a particular choice of the parameter λ) require

at least 80% posterior confidence to justify a strict ordering of firms. In our baseline

specification, applying this choice of λ to generate a transitive ordering over all firms

3

https://github.com/ekrose/drrank


yields three unique grade levels, which limits the expected share of firm pairs that are

misranked to 3.9%. These grades capture roughly 25% of the between-firm variation

in proportional contact penalties and yield an expected rank correlation with the true

penalties of 0.21. Although our grading system reflects only ordinal considerations, we

estimate that the average racial gap in contact rates among firms awarded the worst

grade is 24%, while the gap among firms awarded the best grade is only 3%.

Our earlier work found that industry affiliation explains roughly half of the variation

in racial discrimination levels across firms (Kline, Rose and Walters, 2022). Motivated by

this finding, we extend our procedure to build industry information into the report card

grades. This extension is achieved by augmenting Efron (2016)’s log-spline deconvolution

approach to flexibly estimate separate distributions of discrimination within and between

industries. Consistent with our past work, we find that industry affiliation accounts for

more than half of the cross-firm variation in proportional contact penalties. Incorporating

industry affiliation into the ranking procedure with the same choice of λ yields four grades.

These improved grades explain 70% of the variation in contact penalties across firms and

yield a correlation with the latent ranks of 0.46, while limiting the expected share of firm

pairs that are misranked to 5.6%.

Firms assigned the worst grade in this ranking contact white applicants 23% more

often than Black applicants, similar to the lowest category in the ranking without industry

effects. However, 9 firms receive this label in the model with industry effects compared to

only 2 in the baseline model, an indication of the extra information conveyed by industry.

Similar to the specification without industry, the 11 firms receiving the best grade in

the industry effects model exhibit very small racial biases. To the extent that these

differences are driven by HR practices or other firm policies, there may be opportunities

for the substantial set of firms that scored poorly to improve their behavior by imitating

the practices of those that scored more highly.

We also construct a report card scoring firm preferences for male versus female names.

A four grade coding explains 44% of the variation in firms’ proportional gender contact

gaps. These grades exhibit a correlation of 0.12 with the latent ranks while limiting

the expected share of firm pairs that are misranked to 1.8%. Four firms are assigned to

two grades indicating a strong preference for male names and four are assigned a grade

signaling a strong preference for female names. The magnitude of gender gaps in these

three grades is large, with posterior mean estimates averaging more than 34 log points in

absolute value. The remaining firms are assigned a grade with negligible average gender

contact gaps.

Accounting for industry affiliation yields five gender report card grades. These grades

explain 38% of the variation across firms in gender contact gaps, exhibit a correlation

with the latent firm ranks of 0.16, and limit the expected share of misranked firm pairs

to 1%. Incorporating industry affiliation nearly doubles the number of firms graded as
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discriminating against men. However, the vast majority of firms continue to register

negligible gender preferences, suggesting gender discrimination at the interview stage

is rare and concentrated in particular industries. Grading the industry average gender

contact gaps reveals that bias against male names is particularly concentrated in the

apparel industry.

Our work extends a burgeoning literature on EB ranking methods. A large empirical

literature ranks teachers, schools, hospitals, and neighborhoods using James-Stein style

shrinkage rules (e.g., Chetty, Friedman and Rockoff, 2014; Chetty et al., 2018b). Portnoy

(1982) established conditions under which ranking based on such rules maximizes the

probability of a correct ordering, while Laird and Louis (1989) proposed directly com-

puting posterior mean ranks under a normality assumption on the latent heterogeneity.

Both sorts of ranks may be noisy, however, leading to a proliferation of ranking mistakes

when the number of units grows large. A recent econometrics literature confirms that this

problem can become severe in practice and proposes approaches to testing hypotheses re-

garding either ranks themselves or the levels of highly-ranked units (Andrews, Kitagawa

and McCloskey, 2019; Mogstad et al., 2020).

Building on the analogy with multiple testing, Gu and Koenker (2020) consider the

use of non-parametric EB methods to select tail performers subject to constraints on

the False Discovery Rate, which limits the number of ordering mistakes expected when

selecting top performers. Our proposal generalizes the approach in Gu and Koenker

(2020) by accommodating more than two grades and avoids the requirement to treat one

of the grades as a null hypothesis. More recent work by Gu and Koenker (2022) considers

a ranking of journals based on pairwise citation counts using a penalized Bradley-Terry

model (Bradley and Terry, 1952). While our proposed approach shares Gu and Koenker

(2022)’s focus on pairwise differences, the method does not require pairwise data on

tournaments and allows users to trade off transparent notions of the information content

and reliability of the resulting grades.

The estimates provided in our paper should not be construed as making a legal as-

sessment that companies in our experiment violated anti-discrimination laws. However,

regulatory agencies such as the Equal Employment Opportunity Commission (EEOC)

and the Office of Federal Contract Compliance (OFCCP) have broad discretion to launch

investigations into possible violations of equal employment opportunity laws, especially

violations by federal contractors. Many of the firms in our correspondence experiment

receiving poor grades turn out to be federal contractors, suggesting this information may

be of help in targeting future compliance efforts. While the legal ramifications of contact

gaps in correspondence experiments remain unclear (U.S. EEOC, 1996; Onwuachi-Willig

and Barnes, 2005; U.S. Equal Employment Opportunity Commission v. Target Corp, 460

F.3d 946 7th Cir. 2006), targeting investigations based on such experiments may yield

additional actionable evidence.
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Unfortunately, compliance efforts are inevitably long and costly, and many firms re-

main out of compliance even after having been fined (Maxwell et al., 2013). As the

introductory quote by Brandeis suggests, shining some empirical light on the problem of

discrimination may have a more immediately salutary effect on corporate behavior than

regulatory enforcement efforts. Little scientific information about the discriminatory

conduct of particular firms is available to the public. The most powerful “disinfectant”

may well be the decentralized reactions of employees, customers, and leaders of these

organizations to the provision of such information.

2 The experiment

We construct discrimination report cards based on the resume correspondence experiment

analyzed in Kline, Rose and Walters (2022). The experiment’s sampling frame began with

the 2018 list of companies in the Fortune 500. We then restricted attention to 108 firms

with sufficient geographic variation in entry-level job postings and hiring platforms that

were feasible to audit using our experimental methods. Over the course of the study, 125

entry-level job vacancies were sampled from each of these employers, with each vacancy

corresponding to an establishment in a different U.S. county. This restriction was intended

to ensure nation-wide coverage of each firm’s recruitment conduct and to minimize the

chances that multiple sampled job vacancies were managed by the same individual.

The experiment sampled job postings in a series of five waves, spanning the period

from October 2019 to April 2021, with a target of 25 jobs sampled for each firm in each

wave. The majority of firms (72) were sampled in all waves; the rest were excluded in

some waves due to COVID-19 and technological interruptions. We attempted to send

each sampled job four pairs of applications, with each pair including one Black applicant

and one white applicant. Some vacancies received fewer than 8 total applications because

the job opening closed while applications were still in progress. The final sample included

roughly 84,000 applications 11,000 jobs at 108 firms.

To signal race and gender, we followed previous correspondence experiments and used

distinctive names. Our set of names started with that of Bertrand and Mullainathan

(2004), who used 9 unique names for each race and gender group. This list was supple-

mented with 10 additional names per group from a database of speeding tickets issued

in North Carolina between 2006 and 2018. We classified a name as racially distinctive if

more than 90% of individuals with that name are of a particular race, and selected the

most common distinctive Black and white names for those born between 1974 and 1979.

Distinctive last names came from the 2010 U.S. Census. We selected names with high

race-specific shares among those that occur at least 10,000 times nationally. The full list

of experimental names appears in Appendix Table F2.

One application within each pair was randomly assigned a distinctively white name
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while the other was randomly assigned a distinctively Black name. Fifty-percent of names

were distinctively female and the rest distinctively male, but assignment of sex was not

stratified. Each fictitious applicant was independently randomly assigned a large set of

additional characteristics, including educational and previous employment histories.

Our primary outcome is whether an employer attempted to contact the fictitious

applicant within 30 days. Phone numbers and e-mail addresses assigned to the fictitious

applicants were monitored to determine when employers reached out for an interview.

Contact information was assigned to ensure that no two applicants to the same firm

shared an e-mail address or phone number. Further details on the experimental design

are available in Kline, Rose and Walters (2022).

3 Decision problem

Consider the problem of ranking a collection of n firms, indexed by i ∈ {1, . . . , n} ≡ [n],

according to their values of a scalar measure of discrimination θi ∈ R. The decision

variable di ∈ [n] gives the grade assigned to firm i. Larger values of di indicate a firm is

more biased. Hence, when di > dj for two firms i and j, we say that firm i received a

“worse” grade than firm j.

Beliefs regarding the likely values of the n discrimination levels θ1, . . . , θn are repre-

sented by the distribution function B : Rn → [0, 1], which is assumed to be continuously

differentiable. In the empirical work to follow, B will take the form of a posterior distri-

bution constructed using empirical Bayes methods, as detailed in the next section. For

an analyst able to elicit B via introspection, what follows is a coherent account of how

to translate these beliefs into an optimal ranking.

It is convenient to recast the problem of ranking n firms as that of ranking all
(
n
2

)
pairs of firms subject to a set of transitivity constraints. Correctly ranking the bias of a

pair of firms yields a concordance while ranking the pair incorrectly yields a discordance.

A pair can also be deemed a tie, which yields neither a discordance nor a concordance.

3.1 Gambling over ranks

To build intuition it is helpful to first consider the problem of deciding on the rank of a

single pair of firms i and j. Suppose that correctly ranking the pair yields payoff λ ∈ [0, 1]

while reversing their true rank yields payoff -1. We can also declare the comparison a

draw by assigning the firms equal ranks, which amounts to abstaining from the gamble

and yields certain payoff 0.

The posterior probability that θi is greater than θj can be written πij =
∫∞
−∞

∫ x

−∞ dBij (t, x) ,

where Bij : R2 → [0, 1] denotes the bivariate distribution of beliefs over the pair (θi, θj).

We assume beliefs are continuously distributed. Hence, ties are measure zero and πij =

7



1− πji. This setup implies the expected utility of assigning grades d = (d1, d2) ∈ {1, 2}2

to this pair of firms takes the form

EU(πij, d;λ) =[λπij − πji] · 1{di > dj}+ [λπji − πij] · 1{di < dj}.

The optimal grading policy is a simple posterior threshold rule:

• Set (di = 2, dj = 1) iff πij >
1

1+λ
.

• Set (di = 1, dj = 2) iff πji >
1

1+λ
.

• Otherwise, set di = dj.

When λ = 1, it is optimal to follow a maximum a posteriori (MAP) rule, assigning

the higher rank to whichever firm has a greater probability of having the largest value of

θ. But when λ < 1, it is better to assign pairs of firms with πij near 1/2 equal grades

rather than risk ranking them incorrectly. The quantity 1 − λ can therefore be thought

of as measuring discordance aversion.

A complementary interpretation of λ comes from viewing the grades as the solution to

a scientific reporting problem. Suppose the grades are reported to an audience choosing

between firms i and j. If they choose the firm with the lowest level of discrimination they

receive payoff one. Otherwise, they obtain payoff zero. All members of the audience will

choose whichever firm is recommended by the grades. However, a share q ∈ (0, 1) of the

audience is informed and will choose correctly between firms assigned the same grade,

while the rest of the audience has chance 1/2 of choosing correctly in the event of a tie.

This setup implies that deeming the pair a tie yields expected payoff q + (1− q)/2 =

(1 + q)/2, while properly ordering the firms generates payoff one and misordering them

gives payoff zero. With this payoff structure, the expected utility of choosing grades d is

now given by 1+q
2

+ 1+q
2
EU(πij, d;

1−q
1+q

). Hence, the same λ-thresholding decision rule is

optimal with λ = 1−q
1+q

∈ (0, 1) now a function of the audience’s degree of sophistication.

As the share q of the audience that is informed grows, λ falls, yielding greater discordance

aversion.

3.2 Compound loss

Now consider the case where we can gamble on the relative rank of all
(
n
2

)
pairs of firms.

Kendall (1938)’s classic τ measure of rank correlation equals the share of pairs yielding

a concordance minus the share yielding a discordance. The loss function we propose is a

generalization of τ indexed by a scalar λ ∈ [0, 1] that controls the benefit of a concordance

relative to the cost of a discordance.

8



Letting θ = (θ1, . . . , θn)
′ denote the vector of latent biases and d = (d1, . . . , dn)

′ a

vector of assigned grades, our loss function can be written:

L (d, θ;λ) =

(
n

2

)−1 n∑
i=2

i∑
j=1

[
1 {θi > θj, di < dj}+ 1 {θi < θj, di > dj}︸ ︷︷ ︸

discordant pairs

− (1)

λ

(
1 {θi < θj, di < dj}+ 1 {θi > θj, di > dj}︸ ︷︷ ︸

concordant pairs

)]
.

While every discordant pair yields a loss of 1, every concordant pair reduces loss by

λ. When λ = 1 the loss function equals minus one times Kendall’s τ measure of rank

correlation between d and θ, which we denote τ(d, θ). When λ < 1, ranking mistakes are

more costly than forgone concordances, which creates an incentive to declare ties.

Building on the insight that τ(d, θ) = −L (d, θ; 1), we can also write the loss function:

L (d, θ;λ) = (1− λ)DP (d, θ)− λτ(d, θ),

where the quantityDP (d, θ) =
(
n
2

)−1∑n
i=2

∑i
j=1[1 {θi > θj, di < dj}+1 {θi < θj, di > dj}]

is the Discordance Proportion. The Discordance Proportion gives the share of firm pairs

that are strictly misranked according to their grades. Interpreting the decision problem

as a series of tests of the null hypotheses that θi = θj for each pair of firms, the Dis-

cordance Proportion may be seen as a directional (sometimes called type III) error rate

– the share of null hypotheses that are rejected in favor of erroneous alternatives. This

representation clarifies that the parameter λ trades off the desire to accurately classify

firms by maximizing τ(d, θ) against concerns about misclassifying them, as reflected by

DP (d, θ).1

3.3 Risk function

While we would ideally like to choose grades d that balance the rank correlation τ(d, θ)

against the Discordance Proportion DP (d, θ), these quantities are not directly observed.

However, the expected values of both τ(d, θ) and DP (d, θ) under beliefs B can be

expressed in terms of the pairwise probabilities πij. The expected rank correlation

1Appendix A considers an extended family of loss functions that weight pairwise concordances and
discordances by powers of the difference between the cardinal biases of the two firms, reflecting the
notion that misranking firms with large differences in conduct is more costly than misordering firms with
roughly equivalent conduct. This extension yields a tradeoff between weighted notions of rank correlation
and the Discordance Proportion. An earlier version of this paper (Kline, Rose and Walters, 2023) reports
the results of these rankings.
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τ̄(d) = EB[τ(d, θ)] =
∫
τ(d, x)dB(x) is given by

τ̄(d) =

(
n

2

)−1 n∑
i=2

i∑
j=1

[
1 {di < dj} · (πij − πji) + 1 {di > dj} · (πji − πij)

]
.

Likewise, the expected value of DP (d, θ), a quantity we term the Discordance Rate (DR),

is

DR(d) =

(
n

2

)−1 n∑
i=2

i−1∑
j=1

[
1 {di < dj} πij + 1 {di > dj} πji

]
. (2)

Consequently, the expected loss (i.e., the Bayes risk) of assigning grades d ∈ [n]n can be

written:

R(d;λ) = EB[L(d, θ;λ)] = (1− λ)DR(d)− λτ̄(d). (3)

The optimal grades d∗(λ) minimize R(d;λ). To simplify this minimization problem,

it is convenient to recast the relevant decision variables as pairwise indicators dij =

1 {di > dj} and eij = 1 {di = dj}. Transitivity requires that for any triple (i, j, k) ∈ [n]3

the following constraints hold:

dij + djk ≤ 1 + dik, dik + (1− djk) ≤ 1 + dij, and eij + ejk ≤ 1 + eik. (4)

Hence, we can rewrite the problem of choosing d ∈ [n]n to minimize (3) as that of

choosing the binary indicators {dij, eij}i=n,j=i
i=2,j=1 to minimize

n∑
i=2

i∑
j=1

[
πjidij + πij (1− eij − dij)− λπji (1− eij − dij)− λπijdij

]
, (5)

subject to the transitivity constraints in (4) and the logical constraint that eij+dij+dji =

1 for all (i, j) ∈ [n]2. Note that both the objective (5) and the constraints are linear in

the control variables. This reformulation therefore yields an integer linear programming

problem, the solution to which can be computed with standard optimization packages.

Grades are then reconstructed from the solution {d∗ij, e∗ij}(i,j)∈[n]2 as d∗i = 1 +
∑

j∈[n] d
∗
ji.

3.4 Discordance rates

The reliability of the optimal grades is summarized by the Discordance Rate DR(d∗),

which gives the posterior expected frequency of discordances between all pairs of firms.

From (2), this quantity is trivial to compute, as it depends only on the optimized decisions

{d∗i }ni=1 and the posterior probabilities {πij}i ̸=j.
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It is also useful to consider pairwise Discordance Rates between specific pairs of grades

g and g′ < g, defined as

DRg,g′ =

∑n
i=2

∑i−1
j=1 1 {d∗i = g} 1

{
d∗j = g′

}
EB [1 {θi < θj}]∑n

i=2

∑i−1
j=1 1 {d∗i = g} 1

{
d∗j = g′

}
=

∑n
i=2

∑i−1
j=1 1 {d∗i = g} 1

{
d∗j = g′

}
πji∑n

i=2

∑i−1
j=1 1 {d∗i = g} 1

{
d∗j = g′

} .

The denominator of each pairwise rate is interpretable as the number of rejections of the

null hypothesis that a pair of firms discriminate equally in favor of the alternative that

the firm assigned to group g′ is more biased than the firm assigned to group g. Hence,

DRg,g′ is an analogue of the directional false discovery rate (Benjamini and Hochberg,

1995; Benjamini and Yekutieli, 2005), giving the expected share of pairs with differing

grades that are misranked. The pairwise DRs are symmetric (DRg,g′ = DRg′,g), making

it convenient to report them as a lower triangular matrix. The overall DR is a weighted

average of the pairwise rates with positive weight put on the on-diagonal terms DRg,g,

which are necessarily zero.

3.5 The role of λ

To develop intuition for the role that λ plays in the nature of the solution to our linear

programming problem, it is again useful to consider the task of ranking a single pair in

the context of equation (5), ignoring cross-pair constraints. From section 3.1, when facing

a single pair, the risk minimizing decision rule is

dij = 1{πij > (1 + λ)−1}. (6)

Hence, with λ = 1, it is optimal to choose dij = 1{πij > 1/2}, which can be seen as a

MAP estimate of the pairwise rank. As λ approaches zero, fewer distinct grades will be

assigned. When λ = 0, all n firms are assigned the same grade because πij ≤ 1.

The coarse grades that result from applying the pairwise thresholding rule in (6) when

λ < 1 can generate a form of Condorcet cycle in indifferences that violates the transitivity

constraints in (4) even if they would be satisfied under λ = 1. The following three firm

example illustrates the problem.

Example 1 (Three firms, independent normal beliefs). Suppose n = 3 and we believe

that θi ∼ N (ωi, 1) for i ∈ {1, 2, 3}. Moreover, our beliefs are independent across firms,

implying Bij = N (ωi, 1)×N (ωj, 1). It follows that

πij = Φ

(
ωi − ωj√

2

)
.
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Let λ = 1/4, which implies (1 + λ)−1 = 0.8. If (ω1, ω3) = (2, 0), so that π13 = Φ(
√
2) =

0.92 and π31 = 1−π13 = 0.08, then it is optimal to choose d1 > d3. But if ω2 ∈ (0.81, 1.19),

it is optimal to set d1 = d2 and d2 = d3 because max{π12, π23} < 0.8. By transitivity,

this implies d1 = d3 which contradicts our earlier assertion that d1 > d3.

Note that if we had set λ = 1 in the above example transitivity would have been

satisfied because the beliefs themselves are transitive in the sense that for any triple

(i, j, k) of firms, πij > πji and πjk > πkj imply πik > πki. This transitivity derives

from the scalar index structure of beliefs in this example, revealed by the fact that

πij > πji ⇐⇒ ωi > ωj. Sobel (1993) establishes the transitivity of beliefs in a broader

exponential family subject to a corresponding index restriction. In general, however,

such index representations are not guaranteed and transitivity is not assured. When

transitivity fails, the constraints in (4) will bind and multiple units may receive the same

grade even when λ = 1.

Finally, it is also worth noting that coarse grades need not be a consequence of tran-

sitivity violations. If ω2 ∈ (−1.19, 0.81) in the preceding example, it is optimal to set

d1 > d3, d1 > d2, and d2 = d3. Thus pairwise thresholding yields two grades and no

transitivity violations. Whether the transitivity constraints bind therefore depends on

the structure of the pairwise beliefs.

3.6 Connections to social choice

The literature on ranking methods bears a close connection to problems of social choice.

If we re-interpret πij as the share of votes for firm i over firm j in a pairwise election

then a number of standard preference aggregation can be immediately applied.2 For

example, Borda (1784)’s voting method simply ranks each firm i based on its number of

pairwise election wins; i.e., based upon
∑

j ̸=i 1{πij > 1/2}. If (as we have assumed) B is

continuous, then the Borda measure is equivalent to the posterior mean rank, a quantity

studied by Laird and Louis (1989).

The ranking procedure devised in section 3.3 turns out to be closely tied to Condorcet

(1785)’s voting scheme. To develop this connection, it is useful to define the Kemeny

(1959) distance between the vectors θ and d, which can be written

K (θ, d) =
n∑

i=2

i∑
j=1

|1 {θi > θj} − 1 {θi < θj} − (1 {di > dj} − 1 {di < dj})| .

2In developing this analogy, we temporarily depart from the convention that di > dj implies firm i
has been assigned a “worse” grade than firm j, referring instead to firms with high di as highly ranked.
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Integrating out θ and noting that πij = 1− πji for all i ̸= j yields

EB [K (θ, d)] ∝
n∑

i=2

i∑
j=1

(2πij − 1) (dji − dij) . (7)

Young and Levenglick (1978) show that Condorcet (1785)’s voting scheme is equivalent to

choosing a ranking d that minimizes (7). Young (1986) establishes that this vote aggre-

gation scheme is the unique rule that is unanimous, neutral, and satisfies reinforcement

and independence of remote alternatives.

The summand (2πij − 1) (dji − dij) in (7) is minimized by the pairwise MAP thresh-

olding rule dij = 1{πij > 1/2}.3 When λ = 1, the objective in (5) reduces to (7).

Consequently, the most granular version of our grading scheme minimizes the expected

Kemeny distance between the assigned grades and the true rankings. Accordingly, we

will refer to the grades generated by our procedure with λ = 1 as Condorcet ranks. When

λ < 1 we depart from the Kemeny criterion by calling elections a draw when they are

close. Here, a close election is one where λ(1 + λ)−1 < πij < (1 + λ)−1.

Condorcet rankings satisfy the famous Condorcet winner criterion: a unit that wins all

pairwise elections between candidates (that is, satisfies πij > 1/2 ∀j ̸= i) will be ranked

first. The following proposition reveals that when λ < 1 our grades fulfill a modified

version of the Condorcet winner criterion.

Proposition 1 (λ-Condorcet Criterion). Suppose that firm i satisfies πij > (1+λ)−1 ∀ j ̸=
i. Then d∗i > d∗j ∀ j ̸= i. Moreover, suppose that firm k satisfies πik > (1 + λ)−1 and

πkj > (1 + λ)−1 ∀ j ̸= i, j ̸= k. Then d∗i > d∗k > d∗j ∀ j ̸= i, j ̸= k.

We leave the short proof for Appendix B. By symmetry of the objective in (5), the

firm assigned the lowest grade by our method must achieve the highest grade when the

sign of the estimand being ranked is reversed. Hence, Proposition 1 also implies that any

Condorcet loser – i.e., any candidate firm i with πji > (1 + λ)−1 for all j ̸= i – must be

assigned the lowest grade.

Another well-known property of Condorcet rankings is that when no Condorcet winner

exists, the top ranked candidate must be a member of the Smith (1973) set: the smallest

non-empty subset of candidates such that every candidate in the subset is majority-

preferred over every candidate not in the subset. The following proposition establishes a

corresponding property of our grades in the case where λ < 1.

3Note that pairwise MAP thresholding need not yield the most likely global ordering. For example,
with 3 firms, the modal ordering is argmax(i,j,k):i ̸=j ̸=k πijk, where πijk =

∫∞
−∞

∫ x

−∞
∫ y

−∞ dB(x, y, z).
Suppose that π123 = π132 = π231 = 0.11 and (π312, π213) = (0.37, 0.30). Here, the modal ordering
is {3, 1, 2}. By the law of total probability πij = πijk + πikj + πkij , which implies (π12, π23, π13) =
(0.59, 0.52, 0.52). Hence, pairwise MAP thresholding yields the ordering {1, 2, 3}.

13



Proposition 2 (λ-Smith criterion). Let S denote a collection of firms with the following

dominance property: πij > (1 + λ)−1 ∀i ∈ S, j /∈ S. Then the top graded firms must be

a member of S.

The proof is again left for the appendix. Symmetrically, Proposition 2 implies the

firm assigned the lowest grade must be a member of the Smith loser set of candidates

that are majority non-preferred to all others. Finally, we note that when λ < 1 and no

ordering is possible within the Smith set, all firms in the set will receive equal grades.

Proposition 3 (Unordered λ-Smith candidates are tied). Let S denote a collection of

firms exhibiting the following dominance property: πij > (1 + λ)−1 ∀i ∈ S, j /∈ S.
Moreover, suppose πij < (1 + λ)−1 ∀(i, j) ∈ S. Then all firms in S receive the highest

grade.

As with the preceding propositions, the proof appears in Appendix B.

4 Empirical Bayes

The previous section described a Bayesian approach to ranking units given beliefs B.

Suppose for each firm i ∈ [n], we have a consistent estimate θ̂i of θi along with that

estimate’s asymptotic standard error si. We will use these measurements to provide an

objective grounding to our beliefs B. To do so, we introduce assumptions about the data

generating process giving rise to the measurements.

Assumption 1 (Normal Noise). θ̂i|θi, si ∼ N (θi, s
2
i ) for each i ∈ [n].

Assumption 1 stipulates that the estimation error θ̂i − θi is normally distributed with

known variance equal to s2i . This assumption can be justified by conventional asymptotic

approximations. In our main application, the θ̂i and si are computed from a large number

of job applications to each firm, making such approximations likely to be accurate.

Assumption 2 (Independent Noise). The {θ̂i}i∈[n] are mutually independent conditional

on {θi, si}i∈[n].

Assumption 2 posits that the statistical noise in the estimates is independent across

firms. This assumption is sensible in our main application, where the estimate for each

firm comes from a separate experiment. It is straightforward to relax this assumption

when the covariance structure of the noise has a known low-dimensional structure but we

do not pursue such an extension here.

Assumption 3 (Random Effects). θi|si
iid∼ G.
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Assumption 3 models the θi parameters as random draws from a larger population

of firms. By treating the sampling process as iid we abstract from the fact that a finite

number of Fortune 500 firms could have been sampled in our experiment. An alternate

interpretation of this assumption is that the experiment could have sampled a different

set of jobs from the same firms, resulting in a new collection of θi’s.
4

The mixing distribution G : R → [0, 1] characterizes the distribution of discriminatory

conduct in the population of firms, which allows us to make probability statements about

the latent θi parameters. By treating the θi as identically distributed conditional on the

standard errors si, Assumption 3 rules out the possibility of dependence between latent

effect sizes and precision of the estimates. This independence restriction may require a

transformation of the parameters to be plausible. The framework outlined here applies

after implementing such transformations, as we discuss further in the empirical work to

follow.

4.1 Identification and estimation of G

Assumptions 1-3 imply that each observed θ̂i is the sum of a draw from G and a normally

distributed error with variance s2i . By the law of total probability, we can write the

conditional distribution of θ̂i given si as

Pr
(
θ̂i < t|si = s

)
=

∫
Φ

(
t− x

s

)
dG (x) ≡ F (t|s),

where Φ denotes the standard normal CDF. This equation links the distribution F of

point estimates to the distribution G of latent parameters. Given a consistent estimate

F̂ of F , this integral equation can be solved to recover an estimate Ĝ of the mixing

distribution G. There are many proposals for solving deconvolution problems of this

nature. The recent literature (Efron, 2016; Gu and Koenker, 2020) focuses primarily on

maximum likelihood estimators, an approach we follow here.

4.2 EB posteriors and grades

The empirical Bayes approach treats the estimate Ĝ as a prior in decisionmaking. We

can use this prior to form posterior beliefs over the θi’s given the available evidence

{θ̂i, si}i∈[n]. When Ĝ is close to the true G, the empirical Bayes posterior and resulting

decision rules will approximate the beliefs and decisions of an oracle that knows the

population distribution of discrimination.

4Appendix D of Kline, Rose and Walters (2022) expands on this interpretation.
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By Bayes’ rule

Pr
(
θi < t | θ̂i = t̂, si = s

)
=

∫ t

−∞
1
s
ϕ
(

t̂−x
s

)
dG (x)∫∞

−∞
1
s
ϕ
(

t̂−x
s

)
dG (x)

≡ P(t|t̂, s;G),

where ϕ denotes the standard normal density. The empirical Bayes posterior distribution

for firm i is P(t|θ̂i, si; Ĝ). By plugging in Ĝ for G we “borrow strength” from other

observations when interpreting the evidence for firm i (Efron and Morris, 1973; Morris,

1983). As detailed in Appendix C, we construct bivariate empirical Bayes posteriors

over pairs (θi, θj) to form empirical pairwise contrast probabilities π̂ij. Grades are then

generated by minimizing (5) subject to (4), substituting π̂ij for each πij. Appendix E

demonstrates via simulation that the expected loss generated by making decisions based

upon the EB posteriors comes very close to the loss expected from an oracle that knows

G (and hence the “true” πij’s).

To interpret the posterior contrast probabilities, it is helpful to consider the following

hypothetical thought experiment. Imagine replicating our correspondence experiment an

infinite number of times, in each instance drawing conduct parameters from the distribu-

tion G and noise according to Assumptions 1-2. Each πij gives the share of new firm pairs

with realized evidence configuration (θ̂i, θ̂j, si, sj) among which the event θi > θj occurs.

In contrast, a frequentist test would consider the likelihood of the observed evidence in

repeated draws of the noise conditional on the conduct parameters of the firms under

study. While frequentist p-values allow retrospective assessments of null hypotheses, our

EB estimates of the πij’s offer a best guess of what to expect when reporting any set of

grades.

4.3 Reliability of grades

To summarize the reliability of the grades we report estimates of the Discordance Rate

DR(d∗), replacing the posterior contrast probabilities {πij}i ̸=j in (2) with their EB ana-

logues {π̂ij}i ̸=j. Likewise, τ̄(d
∗) is estimated by plugging in the relevant posterior contrast

probabilities to arrive at a posterior mean estimate of the rank correlation between the

assigned grades and the true ranks.

As noted earlier, the Discordance Rate gives the expected frequency of discordances

between pairs of firms. Assumptions 1-3 clarify that in our EB framework, this expec-

tation averages over both draws of firm-specific parameters from G and draws of the

normal noise in each firm’s estimate. Hence, the Discordance Rate answers the following

question: if we were to rerun the entire experiment – sampling a new set of jobs from the

same population G – and we happened to get the same collection of point estimates and

standard errors, how many grading mistakes should we expect to make? The EB estimate
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of DR(d∗), which substitutes the estimated Ĝ for the unknown G, therefore provides an

assessment of average grade reliability across experiments like ours.

The dependence of the optimized empirical grades on the {π̂ij}i ̸=j generates a finite

sample bias attributable to estimation error in Ĝ. This bias will tend to yield overly

optimistic assessments of both DR(d∗) and τ̄(d∗) when Ĝ is poorly estimated. We explore

this issue further in Appendix E, finding in a Monte Carlo simulation calibrated to our

leading application that these finite sample biases are small.

5 Ranking names

As an introductory illustration of the methods developed thus far, we now rank the em-

ployer contact rates of the names used in our correspondence experiment. The experiment

utilized 76 first names, which were split equally between the nominal categories of: Black

male, Black female, white male, and white female.

Table 1 lists the mean contact rates of names in each of these categories, along with

the number of applications. Distinctively white and female names were called back most

often in the experiment, followed by white male names, then Black male names, with

Black female names called back least often. Though the same names were intended to be

sent to each firm, the COVID-19 epidemic and other disruptions led to minor imbalances

reflected in the sample counts. Column (4) displays test statistics and p-values from Wald

tests of the hypothesis that contact rates are equal within each race and sex group. We

cannot reject the null hypothesis that names with the same nominal race and sex are

treated equally by employers (p ≥ 0.24). Consistent with these test results, the bottom

rows of Table 1 reveal that a bias-corrected estimate of the total variance in contact rates

across names is approximately equal to the between-group variance explained by race and

sex.5 These findings indicate that employers treat names with the same nominal race and

sex equally.

In principle, even if race and sex perfectly predict employer treatment of names, the

causal factors generating this association could be other features of names that correlate

strongly with race and sex. A candidate factor that has attracted substantial attention

from social scientists is the socioeconomic status of individuals with different names

(Fryer Jr and Levitt, 2004; Gaddis, 2017). This hypothesis was evaluated by Bertrand and

Mullainathan (2004), who found that the average maternal education of the first names

5The between-group variance is computed with the formula G−1
G

(
S2 − s2

)
, where G = 4 is the num-

ber of demographic groups, S2 is the sample variance across demographic groups of the point estimates
reported in Table 1, and s2 is the average squared standard error across those groups. Applying this
formula to the race and sex groups yields a variance of (0.011)2, while applying it to the full set of
name-specific contact rates produces a variance of (0.010)2. It is, of course, logically impossible for
the between-group variance to exceed the total variance across names, but this logical constraint is not
imposed on the unbiased variance estimators used here.
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considered in their experiment varied widely within race but was insignificantly related

to contact rates.6 Our finding of insignificant contact probability differences within race

and gender casts further doubt on the view that employer responses are driven primarily

by features of names other than their likely race or sex.

The finding that race and sex provide an accurate low dimensional summary of the

76 name specific contact probabilities suggests it is possible to build a highly informative

ranking of the names involving just a few grades. Below, we investigate this conjecture

in two ways. First, we examine how the expected Kendall’s τ produced by our grading

procedure scales with the number of grades assigned. Second, we treat each name’s

nominal race and sex as “missing labels” and study the extent to which the coarse grades

assigned to first names by our ranking algorithm can recover these labels from data on

firms’ sample contact rates.

5.1 Estimating G

Abusing notation somewhat, let i in this section refer to a first name and denote the

number of applications with name i sent in the experiment byNi. The number of employer

contacts received within 30 days by those applications is denoted by Ci. If the contacts

are viewed as independent Bernoulli trials with name-specific contact probabilities pi then

the contact rate Ci/Ni of name i has mean pi and variance pi(1−pi)/Ni. This dependence

of the variance on the contact probability complicates ranking exercises, as contact rates

for names that deserve the best grades – that is, those with pi closest to 1/2 – will be

estimated with the most noise, leading to a violation of Assumption 3.

To stabilize the variance, we rank names according to a Bartlett (1936) transformation

of their contact rates:

θ̂i = sin−1
√
Ci/Ni.

The logic of this transform follows from the observation that d
dx

sin−1√x =
[
2
√

x(1− x)
]−1

.

Consequently, the Delta method implies θ̂i has asymptotic distribution N (θi, (4Ni)
−1),

where θi = sin−1√pi and the variance (4Ni)
−1 no longer depends on θi.

To estimate the distribution G of θi we first apply a non-parametric maximum like-

lihood (NPMLE) estimator (Koenker and Mizera, 2014; Koenker and Gu, 2017). The

NPMLE estimates a discrete approximation toG assuming that θ̂i | θi, Ni ∼ N (θi, (4Ni)
−1).

Supporting the maintained independence of θi from Ni, a regression of θ̂i on lnNi yields

a statistically insignificant relationship (p = 0.17).7

6Recent work by Crabtree et al. (2022) directly elicits perceptions of educational attainment and
income by first name on a variety of online platforms. This study finds that the extent of variation in
perceptions of social class across racially distinctive first names in the same race category is comparable
to the variability between race categories (see their Figure 4).

7The variation in Ni is primarily attributable to the fact that a subset of our first and last name
pairs were taken from the study of Bertrand and Mullainathan (2004), while the remaining name pairs
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A plot of the estimated marginal distribution Ĝ produced by the NPMLE appears

in Figure 1. The bars correspond to histograms of θ̂i while the green spikes represent

the estimated probability mass function dĜ of θi. This discrete distribution does an

excellent job matching the mean value of the θ̂i and its bias corrected variance, which we

compute as the sample variance of θ̂i estimates minus the average squared standard error

n−1
∑n

i=1 s
2
i = n−1

∑n
i=1(4Ni)

−1.

Figure 1 also plots the estimated density of θi produced by Efron (2016)’s log-spline

estimator, which models the log density of the mixing distribution with a natural cubic

spline with five knots. Estimation of the spline parameters is conducted via penalized

maximum likelihood, where Ni is treated as independent of θi. The penalization param-

eter has been chosen to yield a Ĝ whose mean and variance comes as close as possible

to the sample mean of the {θ̂i}i∈[n] and their debiased variance estimate, as described

further in Appendix D.

Despite being continuous, the bimodal shape of the log-spline estimate is remarkably

consistent with that of the NPMLE. For reference, the sample mean values of θ̂i for

each nominal race and sex category are portrayed on the Figure as vertical lines. The

two modes of the mixing distributions produced by both the NPMLE and log-spline

approaches fall near the race-specific mean contact rates even though the race labels

were not used in estimation.

The lower panel of Figure 1 converts these estimates back into probability points via

the inverse transform pi = sin(θi)
2. The NPMLE finds two large mass points at pi = 0.226

and pi = 0.244. The 1.8 percentage point gap between these mass points is very near

the Black-white contact gap in the experiment of 2.1 percentage points. Likewise, the

distance between the modes of the log-spline estimate is roughly 2.1 percentage points.

The NPMLE also finds a third mass point at pi = 0.260, which lies just above the

estimated average contact rate for distinctively white female names.

The discrete Ĝ produced by the NPMLE is a data-dependent approximation to the

mixing distribution. Even if differences in the treatment of names are driven primarily

by employer perceptions of race and sex, it seems unlikely that the true G is literally

characterized by a few mass points, as small differences across names in their perceived

race should generate corresponding contact rate differences. In what follows, we rely on

the log-spline estimate of G which (as in the theoretical analysis of Section 3) implies

that ties are measure zero.

were drawn from North Carolina data on speeding tickets and Census data. The number of last names
considered differed across the two data sources, leading to imbalances in the average number of last
names (and hence applications) per first name.
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5.2 Reporting possibilities

The top left panel of Figure 2 depicts the EB posterior contrast probabilities π̂ij (see the

Appendix for computational details). Names are ordered according to their Condorcet

rank (i.e., their grade when λ = 1). To ease interpretation, we have labeled the name

with the highest ranked contact probability 1 and that with the lowest ranked contact

probability 76. Name pairs with adjacent ranks tend to have π̂ij’s near 1/2, indicating

little confidence in their relative order. We have accordingly defined each diagonal entry

πii (quantities that are not used elsewhere) equal to 1/2 as a convention. Reassuringly,

name pairs with distant ranks are associated with π̂ij’s near 0 or 1, implying that the

experimental data are highly informative about the relative orderings of these pairs.

The top right panel of Figure 2 depicts the Discordance Rate that arises from mini-

mizing R(d;λ) – that is, from solving (5) subject to (4) – for different choices of λ. The

point representing each solution reports the number of distinct grades for that choice of

λ. A sharp elbow emerges around λ = 0.18, above which the DR grows rapidly. The

DR increases with λ even when the number of grades is constant because the set of firms

assigned each grade has changed.

The bottom panel depicts the trade-off between grade reliability 1 − DR and infor-

mativeness τ̄ associated with our choice of λ. The data are potentially very informative

about name rankings: as λ approaches 1, the expected rank correlation τ̄ approaches

0.44. However, the reliability of such a report would be fairly low, yielding an estimated

Discordance Rate of 0.28. For comparison, we also show the results of naively ranking

based on θ̂i or the EB posterior mean θ̄i =
∫∞
−∞ tdP(t|θ̂i, si; Ĝ). Remarkably, both naive

approaches yield ranks with τ̄ and DR similar to those produced by our report card pro-

cedure when λ = 1. Essentially the same outcome results from a James-Stein type linear

shrinkage estimator nominally predicated on normality of G.8 Breaking the posterior

mean θ̄i into quartiles or deciles yields results similar to setting λ < 1.

To improve on the reliability of the Condorcet grades, we set λ = 0.25, implying

via equation (6) that, in the absence of transitivity considerations, we would abstain

from strictly ranking pairs with posterior certainty less than 80%. This choice yields

two grades that are both highly informative (τ̄ = 0.29) and reliable (DR = 0.07). For

comparison, lowering the implicit posterior threshold to 70% by setting λ = 0.41 would

yield three grades and increase the estimated τ̄ by 11% (to τ̄ = 0.32) at the expense of a

21% increase in the estimated DR. Conversely, requiring λ < 0.18 would generate only

one grade, yielding both τ̄ and DR of zero by construction.

8The linear shrinkage estimator of θi can be written θ̄i,lin = θ̄+ V̂
V̂+s2i

(
θ̂i − θ̄

)
, where θ̄ = n−1

∑
i∈[n] θ̂i

and V̂ = (n− 1)
−1∑

i∈[n]

(
θ̂i − θ̄

)
− n−1

∑
i∈[n] s

2
i .
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5.3 Grades and demographics

Figure 3 lists the first names according to their Condorcet ranks, along with the posterior

mean of each name’s contact probability pi = sin(θi)
2. In addition to the posterior means,

which are depicted as dots, we report posterior credible intervals connecting the 2.5th

percentile of each name’s posterior distribution of contact probabilities to the 97.5th

percentile of its posterior distribution. Approximately 72 (i.e., 95%) of these 76 intervals

should be expected to contain their name’s true latent contact rate.9 While the credible

intervals tend to be fairly short—spanning between two and three percentage points in

most cases—there is clearly enough uncertainty about each name’s contact probability

to significantly complicate the task of ranking them.

Variation in Ni across names, and hence the precision with which contact rates are

measured, could in principle generate substantial non-monotonicity of the posterior mean

in the Condorcet ranks. In practice, however, names’ Condorcet rankings are very nearly

monotone in their posterior means. An exception is found in the name “Latoya” which

exhibits a higher posterior mean, but a lower Condorcet rank, than the name “Maurice.”

This rank reversal reflects the greater posterior uncertainty associated with the name

Latoya, which is evident in the name’s wider credible interval. All else equal, a name

whose posterior distribution is highly diffuse will tend to receive a middling rank.

The Condorcet ranks are extremely correlated with race. Of the top 38 ranked first

names, only 8 are distinctively Black. Though the three top ranked names – Misty,

Heather, and Laurie – are all distinctively female, the presumptive sex of a name turns out

to be only weakly related to its Condorcet rank: 19 of the top 38 names are distinctively

male. Hence, the Condorcet ranks manage to recover the race labels from contact rates

with very little error but serve as unreliable proxies of a name’s sex.

By construction, the Condorcet ranks maximize the expected rank correlation with

the latent θi ranks. The coarse ranks that emerge when λ < 1 sacrifice rank correlation

in exchange for fewer mistakes. Each name’s color reflects its assigned grade. Appendix

Figure F1 shows how these grades vary with name-specific contact rates and standard

errors. As expected, names with higher sample contact rates tend to earn the top grade ⋆⋆.

However, heteroscedasticity in the estimates prevents the grades from being characterized

by a single cutoff contact rate.

Though we estimated earlier that the expected rank correlation of our grades with the

true latent ranks is 0.29, it is also of interest to know how much pi varies across grades.

As described in Appendix C, we can use our EB posteriors to compute an estimate

of the variance of pi across grades. Though our procedure assigns only two grades to

the names, we estimate that the (name-weighted) between grade standard deviation in

9The asymmetry of the credible intervals reflects both that the estimated mixing distribution Ĝ of θi
is asymmetric and that we have fed the interval limits through the nonlinear transformation θ 7→ sin(θ)2.
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contact probabilities is 0.006. Since the marginal standard deviation of pi is roughly

0.010, a regression of the latent pi on our grades should yield an R2 of 35%.

The coarse grades that emerge from our procedure continue to align closely with our

race labels: 35 of the 53 names (66%) in the top grade are distinctively white, while just

3 of the 23 names (13%) in the second grade are white. Notably, the top two names are

also female; however, they do not appear in their own grade. Hence, a two-group ranking

recovers the missing race label with limited error and, consistent with our findings in

Table 1, suggests that white female names are particularly favored.

It is natural to wonder if a solution with more grades would be more predictive of

sex. Appendix Figure F2 reports the pseudo-R2 (McFadden, 1974) and Area under the

Curve (AUC) from a series of logistic regressions of the name’s sex on grade indicators for

different choices of λ. Note that if we were to set λ = 1, this regression would necessarily

predict sex perfectly, as every name would receive its own dummy indicator. However,

the four-grade solution with the smallest value of λ yields a pseudo-R2 for sex of 0.012.

With five grades we find a pseudo-R2 for sex of 0.034. By contrast, a corresponding

logistic regression of race on assigned grades yields pseudo-R2s for four- and five-grade

solutions of 0.28 and 0.23, respectively.

These findings demonstrate that our grades are strong predictors of a name’s race but

not its sex. Given that the overall gender gap in contact rates is statistically insignificant

in our experiment, the failure to predict gender is not surprising. The ability to predict

race for a wide range of choices of λ, however, suggests that our grading scheme can be

effective at detecting latent group structure even when the number of units being ranked

is relatively modest.

6 Ranking racial contact gaps

We turn now to ranking firms in their relative treatment of Black versus white names. We

begin by defining a firm-specific bias measure θi that is scale invariant and then develop

a statistical model of the dependence between θi and si that suggests a transformation

of the data for which the precision independence requirement of Assumption 3 holds.

Unlike in our study of names, this transformation takes the form of a residualization

of θ̂i against si. We then deconvolve this estimated residual and study the reporting

possibilities associated with grades based on the estimated distribution of contact gaps.

6.1 Defining θi

The conduct of each firm i in our experiment is characterized by the race-specific contact

probabilities (piw, pib). These probabilities represent the hypothetical 30 day contact rates

that would arise for applications with distinctively white and Black names, respectively,
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if we were to sample an infinite number of job vacancies from firm i and send each job

four pairs of applications. The sample contact rates (p̂iw, p̂ib) provide unbiased estimates

of these contact probabilities.10

While our past work probed for discrimination by estimating the levels gap piw − pib,

this measure is not ideal for ranking firm conduct as level gaps will mechanically be smaller

for firms that contact fewer applications overall. To mitigate the influence of variation in

overall contact rates on our measure of discrimination, we focus on the proportional bias

against Black names at firm i:

θi = ln(piw)− ln(pib),

which has the advantage of being scale invariant. We estimate θi with the plug-in analog

θ̂i = ln(p̂iw) − ln(p̂ib). Because the number of applications sent to each firm is large,

we employ the Delta method to construct a standard error si for each θ̂i based on the

job-clustered sampling covariance matrix of the sample contact rates. Although θ̂i is not

fully variance-stabilized, the log transform removes any direct dependence of the variance

on θi itself.
11

In what follows, we exclude the eleven firms in the experiment with callback rates

below 3% or fewer than 40 total sampled jobs, since the estimated contact ratios for

these firms may be unreliable. Summary statistics for the remaining estimation sample

of 97 firms are provided in Table 2. The unweighted average value of θ̂i across these 97

firms is 0.095, implying the typical firm in our sample favors white names by roughly 10%.

Detailed point estimates and uncertainty measures for all 97 firms used in our analysis

are provided in Appendix F5.

Twenty-one of the 97 estimated contact gaps are negative, indicating a preference

for distinctively Black names. The firm-specific estimates are noisy, however, with an

average standard error of 0.104. To test whether all firms in fact weakly prefer white

to Black names (i.e., the joint null that θi ≥ 0 ∀i ∈ [n]) we apply the high dimensional

inequality testing procedure of Bai, Santos and Shaikh (2021). This procedure yields a

p-value of 0.94, suggesting the observed negative point estimates are likely attributable

to chance.

Although the asymptotic variance of θ̂i does not mechanically depend on θi, it is

possible for θi and si to be correlated. The top panel of Appendix Figure F3 plots θ̂i

10To account for the fact that some job vacancies closed before we were able to send all four pairs of
applications, we weight the sample contact rates inversely by the number of applications sent to each
job. This weighting amounts to first computing the average contact rate at each job, then taking an
unweighted average across jobs.

11Specifically, a second-order Taylor expansion of p̂iw/p̂ib = exp
(
θ̂i

)
around the point (piw, pib) yields

the approximation V [p̂iw/p̂ib] ≈ θ2i

{
V[p̂iw]
p2
iw

+ V[p̂ib]
p2
ib

− 2C[p̂iw,p̂ib]
piwpib

}
. Consequently, the Delta method im-

plies that V
[
θ̂i

]
≈ V[p̂iw]

p2
iw

+ V[p̂ib]
p2
ib

− 2C[p̂iw,p̂ib]
piwpib

.
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against si, revealing that firms with more precise estimates tend to show less bias against

Black names. The Spearman correlation between between θ̂i and si is 0.36 (p < 0.001).

6.2 A model of precision dependence

In light of the above findings, we assume that each θi is non-negative and may depend

(statistically) on its standard error si. A simple model satisfying these criteria is:

θi = exp (β ln si + ln vi) = sβi vi, vi | si
iid∼ Gv for all i ∈ [n]. (8)

The parameter β governs how the conditional distribution of bias varies with the standard

error si. When β is positive, both the mean and variance of θi increase monotonically

with si. The latent variable vi captures heterogeneity in discrimination among firms

with similar standard errors. We assume vi is fully independent of si and follows a

distribution Gv : R+ → [0, 1] with strictly positive support. In the framework of Section

4, this restriction replaces Assumption 3, or equivalently, suggests that it applies to the

transformation θi/s
β
i .

To evaluate the plausibility of the model in equation (8), we scrutinize some of the

moment conditions it implies. Letting E[vi|si] = µ > 0 and V[vi|si] = σ2
v > 0, consider

the following “studentized” version of θ̂i:

Ti =
θ̂i − sβi µ√
s2βi σ2

v + s2i

.

Maintaining Assumptions 1 and 2, each estimate θ̂i is presumed to be centered at the

true θi and normally distributed with variances given by s2i . Consequently, the model in

(8) restricts Ti to have mean zero and variance one conditional on si. These restrictions,

in turn, imply the following four moment conditions:

E[Ti] = 0, E[Tisi] = 0, E[T 2
i − 1] = 0, E[(T 2

i − 1)si] = 0. (9)

Imposing these conditions via two-step efficient GMM yields the parameter estimates

reported in Table 3. The minimized value of the GMM criterion function suggests the

model’s over-identifying restrictions – which test the joint requirement that Ti has mean

zero and constant variance across all values of si – are satisfied (p = 0.97). The GMM

estimate of β is β̂ ≈ 1/2, indicating that the conditional mean of θi is roughly proportional

to
√
si. The large estimated value of σv reveals that discrimination varies substantially

among firms with similar standard errors.

The top panel of Appendix Figure F3 superimposes the estimated conditional expec-

tation function Ê[θi|si] = sβ̂i µ̂ on the scatterplot of θ̂i against si. Consistent with the
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J-test from GMM estimation, the estimated conditional mean fits the cloud of points

closely. The bottom panel of Appendix Figure F3 plots values of the estimated resid-

ual T̂i =
θ̂i − sβ̂i µ̂√
s2β̂i σ̂2

v + s2i

against si. In line with our model, T̂i exhibits roughly constant

variance and a mean near zero throughout the observed range of si.

6.3 Estimating G

To estimate the distribution function Gv, we deconvolve the residual v̂i = θ̂i/s
β̂
i . Assump-

tion 1, in conjunction with Slutsky’s Theorem, implies the following large-n approxima-

tion to the distribution of this residual:

v̂i | vi, si ∼ N
(
vi, s

2(1−β)
i

)
, for all i ∈ [n].

Relying again on a variant of Efron (2016)’s log-spline estimator, we parametrize Gv as a

natural cubic spline with five knots and strictly positive support. The spline parameters

are estimated by penalized maximum likelihood with the penalty term chosen to minimize

the distance to our earlier GMM estimates (µ̂, σ̂2
v) of the first two moments of vi. We

then integrate over the empirical distribution of si to convert the estimated Ĝv into an

estimate Ĝ : x 7→ n−1
∑

i Ĝv(x/s
β̂
i ) of the distribution of contact gaps.

The upper left panel of Figure 4 plots the log-spline estimate Ĝv overlaid against

the histogram of v̂i. Ĝv is less dispersed than the histogram, reflecting the noise in

the estimates. The upper right panel plots the corresponding estimate of Ĝ against the

histogram of contact gap estimates {θ̂i}ni=1. Unlike with our earlier analysis of names,

the density Ĝ is unimodal but skewed. While most firms exhibit little bias against Black

names, some exhibit large biases of 20-40%. By construction, no firms are estimated to

discriminate against white names.

As a robustness check, we also compute NPMLE estimates using the GLVmix proce-

dure developed by Koenker and Gu (2017), which estimates a bivariate discrete distri-

bution for (θi, Nis
2
i ) under the assumption that θi is independent of Ni. The resulting

marginal distribution of θi exhibits many mass points and is also unimodal, peaking at

values indicating modest bias against Black names. The NPMLE estimate of the vari-

ance of the θi’s departs somewhat from both the log-spline estimate and the bias-corrected

variance estimator n−1
∑

i[(θ̂i− θ̄)2− s2i ]. However, the NPMLE and log-spline estimates

appear comparable in their overall shape, with the NPMLE assigning little mass to neg-

ative values of θi. Since a discrete distribution with exact ties seems implausible, we rely

again on the log-spline estimates in what follows. The EB posterior distribution inherits

the continuity of the log-spline deconvolution estimate of the prior distribution, which

has the added benefit of simplifying computation of posterior credible intervals for each

θi.
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6.4 Industry effects

In Kline, Rose and Walters (2022) we found large differences in the magnitude of contact

gaps across 2-digit industries. Appendix Table F3 provides an updated list of 19 industry

groupings designed to ensure that at least three of the 97 firms studied in this paper are

present in each group.12 Industries are assigned using the SIC codes of establishments

reported in the 2019 InfoGroup Historical Datafiles (InfoGroup, 2019). In cases where

firms operate in multiple industries, codes are assigned to best match the jobs sampled

in the experiment.

Many of these industries have only 3 firms, precluding a fixed effects approach to

incorporating industry affiliation into the model. We therefore employ a hierarchical

random effects specification of vi taking the form:

vi = ηk(i)ξi,

ξi | si, ηk(i)
iid∼ Gξ, i ∈ {1, ..., n}, ηk | sk

iid∼ Gη, k ∈ {1, ...., K},

where the function k : {1, . . . , n} → {1, . . . , K} returns a firm’s industry, sk is the

vector of standard errors for all firms with k(i) = k, and the distribution functions

Gη : R+ → [0, 1] and Gξ : R+ → [0, 1] have strictly positive support. This hierarchical

specification relaxes the iid restriction in Assumption 3: the industry effect ηk(i) captures

correlation in discrimination among firms in the same industry, while the firm effect ξi

captures departures from the industry average. These two effects are independent, both

of precision levels and each other, implying the marginal distribution of vi can be written

Gv : x 7→
∫∞
0

Gξ (x/z) dGη (z). We normalize E[ηk] = 1, which implies E[ξi] = µ.

The marginal variance of vi in this model is σ2
v = σ2

ησ
2
ξ +σ2

ηµ
2+σ2

ξ , where σ
2
ξ gives the

variance of ξi and σ2
η the variance of ηk. To separately identify the between and within

industry variance components, we add two new moment conditions to the set listed in

(9). Denote the average value of v̂i in industry k by

v̄k = n−1
k

∑
i:k(i)=k

θ̂i/s
β
i ,

where nk gives the number of firms in industry k. The variance of v̄k in this model can

be shown to be Vk ≡
(
σ2
ησ

2
ξ/nk + σ2

ηµ
2
v + σ2

ξ/nk

)
+ n−2

k

∑
i:k(i)=k s

2(1−β)
i . Letting s̄k =

n−1
k

∑
i:k(i)=k si denote the average standard error in industry k, our two new moment

12The industry definitions from Kline, Rose and Walters (2022) yield 24 industry codes, three of which
contain only one of our 97 firms. Report cards based on these legacy definitions are provided in the
Appendix and an earlier version of this paper (Kline, Rose and Walters, 2023).
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conditions can be written

E
[
(v̄k − µv)

2 − Vk

]
= 0, E

[{
(v̄k − µv)

2 − Vk

}
s̄k
]
= 0. (10)

The first condition simply equates the empirical squared deviations of the v̄k around

the model implied mean to the model implied variance. The second condition prohibits

heteroscedasticity with respect to s̄k.

GMM estimates of the parameters of this hierarchical model are reported in the

second column of Table 3. The model’s over-identifying restrictions again appear to be

satisfied (p = 0.95). While the variance σ2
η of the industry component is estimated to

be more than 20 times as large as the variance σ2
ξ of the firm specific component, the

multiplicative influence of these components on vi implies that roughly one third of the

marginal variance in vi stems from within industry variation.13

To identify the marginal distribution of θi, we assume that both Gη and Gξ belong to

the exponential family with log density parameterized by a five-knot natural cubic spline.

Generalizing Efron (2016)’s log-spline estimator to the hierarchical case, these distribu-

tions are estimated by penalized maximum likelihood (see Appendix D for details). The

two penalty parameters in this likelihood function are chosen so that the resulting distri-

butions match GMM estimates of the between-industry and total variances of θi.

Estimates of Gξ and Gη are displayed in the bottom left panel of Figure 4. Table F4

reports moments of the within- and between-industry distributions implied by the log-

spline estimates as well as moments of the overall contact ratio θi = sβi ηk(i)ξi. The mean

contact gap, between-industry standard deviation, and total standard deviation reported

in Table F4 closely match the corresponding GMM estimates of these parameters in Table

3.

As can be seen in Figure 4, the industry component ηk is more variable than the firm

component ξi and exhibits positive skew and excess kurtosis, reflecting that some indus-

tries feature particularly heavy discrimination against Black names. Recall however that

the location of the industry effect distribution is not informative as we have normalized

E[ηk] = 1. The bottom right panel of Figure 4 shows that the implied distribution of

θi is similar to the estimate from the model without industry effects in the top right

panel, with a peak at small contact penalties and a long right tail. As expected, the

deconvolved distribution is more compressed than the empirical distribution of estimated

contact gaps.

13The within industry variance is E[V[vi|ηk(i)]] = E[σ2
ξη

2
k(i)] = σ2

ξE[η2k(i)] = σ2
ξ

(
σ2
η + 1

)
. Hence, the

within industry variance share evaluates to (σ2
η + 1)σ2

ξ/σ
2
v .
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6.5 Reporting possibilities

Figure 5 plots the pairwise posterior ranking probabilities π̂ij with firms ordered by their

rank under λ = 1. Following our earlier convention with the names, these ranks range

from 1 (the largest contact penalty) to 97 (the smallest contact penalty). Panel (a)

shows results from our baseline specification with the log-spline estimate of the marginal

mixing distribution as prior, while panel (b) reports results based on the hierarchical

log-spline model with industry effects. Because the firm assigned rank 1 is deemed most

discriminatory, many other firms are more likely than not to have lower values of θi.

Firms of middling rank, on the other hand, are more difficult to distinguish from others.

Including industry effects tightens the posteriors, which leads the π̂ij’s to become more

dispersed around 1/2.

The pairwise probabilities that satisfy the naive thresholding rule π̂ij > (1+λ)−1 when

λ has been set to 0.25 have been bordered in red. The resulting frontier implies numerous

transitivity violations. For example, in panel (a), firm #9 cannot be distinguished from

firm #4 or firm #49, suggesting each of these pairs in isolation would be labeled a

tie. However, firm #49 is clearly distinguishable from firm #4, yielding a contradiction.

Super-imposed on the figure we show a frontier corresponding to the three grades that

solve (5) subject to (4) when λ = 0.25. These frontiers can be viewed as a transitivity-

constrained version of the thresholding rule.

Panel (a) of Figure 6 plots the number of distinct grades that result from minimizing

our estimate of R(d;λ) along with the Discordance Rate of those grades as a function

of the parameter λ. As expected, the number of grades tends to increase with λ as does

the DR. In the absence of industry effects, setting λ = 0.25 yields three groups and an

unconditional DR of roughly 3.9%. Introducing industry effects yields four groups and

increases the DR to 5.6%.

Panel (b) of Figure 6 illustrates the empirical tradeoff between the information content

of our grades, quantified by the expected rank correlation τ̄ , and their reliability, as

quantified by the Discordance Rate. Without industry effects, setting λ = 1 yields

τ̄ = 0.46 and a Discordance Rate of 0.27. Including industry effects increases the τ̄ of the

Condorcet ranks to 0.59 and lowers their DR to 0.20. In contrast, ranking naively on θ̂i

yields both a higher Discordance Rate and lower τ̄ than the Condorcet ranks, indicating

such an approach is both less informative and less reliable.

Interestingly, ranking based upon the EB posterior means yields a τ̄ and DR essen-

tially equivalent to the Condorcet ranks.14 Coarsening the posterior mean into deciles

or quartiles lowers the DR somewhat, but at the cost of excessively large reductions in

τ̄ . We also report the results of ranking based upon linear shrinkage estimators in the

14While ranking based upon posterior means is known to possess certain optimality properties when
G is normal and the normal noise is homoscedastic (Portnoy, 1982), our environment features both
heteroscedasticity and a decidedly non-normal mixing distribution Ĝ.
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James-Stein tradition. These ranks perform substantially worse than naively ranking the

point estimates θ̂i. This poor performance is an artifact of our earlier finding that more

precise estimates tend to exhibit less bias, which suggests the noisiest estimates should

be shrunk the least.

To improve the reliability of the Condorcet ranks, we set λ = 0.25. In the absence

of transitivity violations, this choice of λ requires a posterior threshold of at least 80%

to make pairwise ranking decisions. Resolving transitivity violations raises the required

posterior certainty above 80% in most instances, yielding a Discordance Rate of only 3.9%

in the baseline specification without industry effects and 5.6% in the hierarchical specifi-

cation with industry effects. Fortunately, the resulting grades remain highly informative:

τ̄ is 0.21 in our baseline specification and 0.46 when industry effects are included.

7 Racial discrimination report cards

Figure 7 provides a concise, low-dimensional summary of differences in racial discrimina-

tion across firms. This report card is based on the baseline specification without industry

effects. The firms are ordered by their Condorcet ranks (i.e., their grades under λ = 1).

Firms that are federal contractors, and hence subject to higher regulatory standards

regarding equal opportunity laws, have been listed in black, while those that are not

contractors are listed in gray.15

In addition to the report card grades, the Figure plots an empirical Bayes posterior

mean estimate of each firm’s bias θi. To arrive at these posterior means, the EB model

effectively shrinks each point estimate towards the average θ̂i of firms with similar stan-

dard errors (see Appendix Figure F3). Bracketing the posterior mean estimates are EB

95% credible intervals, which are constructed by connecting the posterior 2.5th percentile

of θi to the posterior 97.5th percentile. The lower limit of each credible interval is positive

as a result of our support restriction ruling out bias against white applicants.

Setting λ = 0.25 generates a report card with three grades, represented in Figure 7

by a number of ⋆’s between one (the worst grade) and three (the best). The shading of

credible intervals reflects the grade assigned to each firm. Most firms receive the middle

grade of ⋆⋆, which reflects both the noise in our estimates and the shape of the estimated

distribution Ĝ. By contrast, only the two firms with the worst Condorcet ranks, Genuine

Parts (Napa Auto) and AutoNation, are assigned the grade of ⋆, suggesting they are the

heaviest discriminators. Fourteen firms are assigned the score of ⋆ ⋆ ⋆, which indicates

that this group is the least-biased against Black applicants. The firm receiving the best

Condorcet rank is Charter/Spectrum.

While the Condorcet ranks, the ranks of the posterior means, and the ranks of the

15Contractor status as of September 2020 was obtained via a Freedom of Information Act request to
OFCCP.
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bias estimates are highly correlated, this correlation is not perfect. For example, Genuine

Parts has the sixth largest proportional contact gap estimate (see Appendix Table F5

for the complete list) but is assigned a Condorcet rank of 1 and the largest posterior

mean. In contrast, AutoNation has the largest proportional contact gap estimate but a

Condorcet rank of 2 and the second largest posterior mean. This rank reversal reflects

that AutoNation has a larger standard error than Genuine Parts, which leads to more

shrinkage of its point estimate towards the center of the distribution.

Appendix Figure F5 depicts the relationship between report card grades and firm-

specific bias estimates and standard errors. Firms assigned the best grade of ⋆ ⋆ ⋆ tend

to have both small contact gap estimates and standard errors, while firms assigned the

grade ⋆⋆ range widely in their standard errors but have modest contact gap estimates

falling uniformly below 0.2. Firms assigned the worst grade of ⋆ exhibit very large contact

gap estimates and widely varying standard errors. Appendix Figure F7 depicts the grade

assignments that result from different choices of λ.

Though we have used stars to represent the firm ranks, it is important to remember

that these grades were designed to convey ordinal rather than cardinal information. One

of us (Kline, 2023) has recently cautioned against focusing excessively on rankings without

also considering absolute standards of conduct. There is nothing in our integer linear

programming problem that guarantees a grade of ⋆ implies a particularly egregious level

of discrimination. Conversely, there is nothing that guarantees firms assigned a grade of

⋆ ⋆ ⋆ exhibit no bias against Black names. As it turns out, however, the grades assigned

by our procedure yield groups of firms with large cardinal differences in contact gaps.

The firms assigned the grade of ⋆ ⋆ ⋆ have an average posterior mean estimate of θi of

0.03, while the two firms assigned the worst grade exhibit posterior means indicating a

24% penalty against Black names on average.

Our past work (Kline, Rose and Walters, 2022) found that federal contractors, who

are subject to monitoring by OFCCP for compliance with equal employment laws, tend

to be substantially less biased against Black names on average, which is consistent with

a variety of other evidence on the causal effects of affirmative action provisions on hiring

behavior (e.g., McCrary, 2007; Kurtulus, 2016; Miller, 2017). Indeed, an early audit

study of federal contractors by Newman (1978) found evidence of a systematic preference

for Black over white applicants among such firms. It is somewhat surprising then that

the Condorcet ranks suggest that two of the five most heavily discriminating firms are

all federal contractors. This finding is, to some extent, a reflection of the fact that the

vast majority of the firms in our sample of large employers are contractors (63 of 97).

The mean Condorcet rank of federal contractors is 54 (with rank 1 showing the most bias

against Black applicants) while the mean Condorcet rank of non-contractors is 42.

Although a legal precedent for audit studies has yet to be established, a commonly

applied standard in discrimination cases is the so-called “four-fifths rule,” described in

30



the Uniform Guidelines on Employee Selection (Commission, 1978) which state that

A selection rate for any race, sex, or ethnic group which is less than four-

fifths (4/5) (or eighty percent) of the rate for the group with the highest rate

will generally be regarded by the Federal enforcement agencies as evidence of

adverse impact.

Our estimates suggest the contact rates for fictitious applicants in our experiment may

have violated this standard.

7.1 Industry effects

Figure 8 displays a racial discrimination report card based on the model with industry

effects. Each firm’s industry code is listed in parentheses next to its name. Adding

industry information while maintaining the preference parameter λ at 0.25 yields a report

card with four grades rather than three. The number of firms assigned the worst grade

of ⋆ increases from two to nine, while seventeen firms are now assigned the second-worst

grade ⋆⋆. Eleven firms are assigned the best grade of ⋆ ⋆ ⋆⋆. Appendix Figure F8 depicts

the grade assignments that result from different choices of λ.

The average value of the posterior mean θ̄i among the firms assigned the grade ⋆ is

0.23. In contrast, the average value of θ̄i among the eleven firms assigned grade ⋆ ⋆ ⋆⋆ is

0.03, suggesting a negligible effect of race on callback outcomes in this group. This finding

indicates that many large firms are nearly unbiased, an important possibility result for

companies seeking to improve the fairness of their recruiting process. Appendix Figure

F11 shows an alternate grading based upon the industry codes utilized in Kline, Rose and

Walters (2022). Encouragingly, the results are broadly similar, though fewer firms are

assigned the worst grade because that grouping of industries is a less powerful predictor

of firm conduct.

The small number of grades generated by our grading procedure explain a substantial

portion of the total variance in discrimination across employers, especially when we in-

corporate industry. To summarize the explanatory power of the grades, we again utilize

the grade-average posterior means as detailed in the Appendix. The variance estimate is

weighted by the number of firms per grade, so that the ratio of between-grade to total

variance has an R2 interpretation. The estimated between-grade standard deviation in

contact penalties is 0.034 for the three grades reported in Figure 7, implying an R2 of

roughly 25%. Adding industry boosts the R2 to 70%. In other words, the four categories

displayed in Figure 8 explain more than two thirds of the variance in discrimination across

the 97 companies in our experiment.

Our ranking procedure allows us to grade the conduct of entire industries in addition

to individual firms. Figure 9 plots posterior estimates of industry mean contact penalties
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ηkn
−1
k

∑
i:k(i)=k s

β̂
i . The industry with the greatest estimated bias against Black names

is SIC 55, “Auto dealers / services / parts,” with a posterior mean contact penalty of

22%, while the industry with the smallest estimated bias is SIC 54, “Food Stores,” which

has a posterior mean of roughly 5%. In an industry grading scheme with λ = 0.25

(which yields four total grades), SIC 55 and SIC 59 (“Other retail”) are assigned the

worst grade of ⋆. SIC 56 (“Apparel Stores”) receives the unique grade of ⋆⋆. A group of

eleven industries receives the best grade of ⋆ ⋆ ⋆⋆ and exhibits an average posterior mean

contact gap of roughly 6%. The role of common industry-level practices in generating

the stark differences between these low- and high-performers is an interesting topic for

further inquiry.

These substantial industry differences explain the more informative firm-level poste-

riors generated by the report card incorporating industry effects. For example, Disney

has a negative point estimate (-0.12) but a large standard error (0.24), leading to an

intermediate classification of ⋆⋆ in the baseline report card in Figure 7. Disney’s indus-

try classification is SIC 59 because the Disney jobs in our sample are primarily at retail

stores. Due to the substantial discrimination in this industry depicted in Figure 9, the

report card with industry effects places Disney in the most discriminatory category of

⋆ (see Figure 8). This change reflects the strong within-industry correlation in conduct

present in our data, which leads to substantial weight on the industry average for firms

with noisy contact gap estimates. While such industry-based shrinkage will tend to in-

crease the accuracy of grades and posterior mean predictions on average, it may worsen

predictions for firms that are atypical of the industries in which they operate.

7.2 Misclassification

Figure 10 assesses the reliability of report card grades by reporting the lower-triangular

matrix of estimated between-grade Discordance Rates in our baseline model that omits

industry effects. Panel (a) reveals that 11% of the firm comparisons across grades ⋆ and ⋆⋆

are expected to be misordered. The DR naturally declines when comparing non-adjacent

grades. The expected share of misordered comparisons across grades ⋆ and ⋆ ⋆ ⋆ is below

1%. Adjacent grades have estimated DR’s between 11 and 14%, while the discordance

rate for non-adjacent grades is estimated to be only 0.8%.

Panel (b) of Figure 10 summarizes the reliability of the grades obtained when condi-

tioning on industry effects. Discordance Rates between adjacent grades are estimated to

range from 11% to 17%. DR’s for grades separated by two categories are estimated to fall

below 3%, and the estimated DR between the worst grade (⋆) and the best grade (⋆ ⋆ ⋆⋆)

is 0.4%. These findings suggest that a comparison of the best- and worst-performers in

Figure 8 isolates firms with large differences in discriminatory conduct while yielding few

misclassifications.
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8 Ranking gender contact gaps

We turn now to studying firms’ gender preferences. Though gender does not seem to be

an important aspect of the average treatment of names, the firms in our experiment vary

enormously in their propensity to contact names of different genders, with some firms

preferring women and others preferring men. In what follows, we build a statistical model

of this “bidirectional” discrimination and study the reporting possibilities offered by our

ranking procedure.

8.1 Defining θi

Paralleling our analysis of race, gender contact gaps are defined proportionally as θi =

ln pim− ln pif , where pim and pif refer to average contact rates for male and female names

at firm i. These gender gaps are estimated by plugging in sample contact rates p̂im and

p̂if to form the estimator θ̂i = ln p̂im − ln p̂if .

As Table 2 reveals, the mean value of θ̂i is nearly zero. However, the bias-corrected

standard deviation of gender contact gaps is 0.194, nearly three times the corresponding

estimate for race (0.069). A zero average gender gap coupled with substantial dispersion

across firms implies that some firms favor male applications, while others favor female

applications. This finding is consistent both with our past analysis of levels gaps in

this experiment (Kline, Rose and Walters, 2022) and analysis of other correspondence

experiments (Kline and Walters, 2021; Schaerer et al., 2023).

8.2 A model of precision dependence

Inspection of the relationship between θ̂i and si (depicted in Appendix Figure F4) suggests

the variance, but not the level, of θi depends on si. Accordingly, we work with a linear

model taking the form:

θi = µ+ sβi vi, vi | si ∼ Gv,

where the distribution function Gv : R → [0, 1] has unrestricted support, the constant

µ measures average gender bias in the population, E[vi|si] = 0, and V[vi|si] = σ2
v >

0. Note that this specification is essentially a recentered version of (8) that allows θi

to take on negative values. Defining the relevant studentized contact gap measure as

Ti =
θ̂i − µ√
s2βi σ2

v + s2i

, the parameters (β, µ, σv) are estimated by GMM using the moment

conditions in (9).

The GMM estimates are reported in the third column of Table 3. The parameter µ

is statistically indistinguishable from zero, suggesting that the average firm treats male

and female names equally. The parameter β is estimated to exceed one and is easily
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distinguishable from zero, indicating that more precise estimates are associated with gen-

der bias of smaller absolute magnitude. The estimated value of σv implies a standard

deviation of θi of 1.83 percentage points, which is very close to the aforementioned esti-

mate of 1.94 percentage points obtained by debiasing the sample variance. Our model

provides an excellent fit to the data: the GMM J statistic is below its expected value and

the scatterplot of T̂i against si (depicted in the bottom panel of Appendix Figure F4) is

homoscedastic and centered around zero.

8.3 Estimating G

We use the GMM parameter estimates (µ̂, β̂) to form the residual v̂i = (θ̂i − µ̂)/sβ̂i .

Appealing again to Slutsky’s Theorem, we assume v̂i | vi, si ∼ N (vi, s
2(1−β)
i ). As in our

analysis of racial gaps, we estimate the distribution G of proportional contact gaps by

first deconvolving v̂i using the log-spline estimator to obtain the estimated distribution

Ĝv. We then estimate G with Ĝ : x 7→ n−1
∑

i Ĝv((x− µ̂)/sβ̂i ).

The results are shown in the upper panel of Figure 11. The estimated density of θi

is peaked near zero indicating most firms have very weak gender preferences. However,

the heavy tails suggest a small minority of firms have strong gender preferences. For

comparison we show NPMLE estimates derived from the GLVmix procedure of Koenker

and Gu (2017), which assumes θi is independent of sample size Ni. Reassuringly, the

NPMLE estimates of G align closely with the log-spline estimates.

8.4 Industry effects

To allow for industry effects, we decompose vi into additively separable industry and firm

components:

vi = ηk(i) + ξi,

ξi | si, ηk(i)
iid∼ Gξ, i ∈ {1, ..., n}, ηk | sk

iid∼ Gη, k ∈ {1, ...., K},

where ηk(i) is a mean zero industry effect with variance σ2
η, ξi is a mean zero firm effect

with variance σ2
ξ , and the distribution functions Gξ : R → [0, 1] and Gη : R → [0, 1]

have unrestricted support. We assume these components, and therefore vi itself, are fully

independent of si. Letting v̄k = n−1
k

∑
i:k(i)=k v̂i the model implies V[v̂i] = σ2

η + n−1
k σ2

ξ +

n−2
k

∑
i:k(i)=k s

2(1−β)
i ≡ Vk.

Using these definitions, we add the moment conditions in (10) to our GMM system,

which yields estimates of the variance components (ση, σξ). The fourth column of Table

3 reveals that this hierarchical model fits well, again yielding a J-statistic below its

expected value. The estimated marginal distribution of θi suggests the average firm in

our experiment has a gender bias of exactly zero. The standard deviation of θi is roughly
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15 percentage points. Between-industry variation is estimated to account for nearly half

of the variation in proportional gender contact gaps.

As in our analysis of race gaps, we estimate the distributions Gξ and Gη with a hi-

erarchical generalization of Efron (2016)’s log-spline procedure. The resulting densities

are shown in the lower panel of Figure 11. Both the within and between industry com-

ponents exhibit substantial variability but are not especially peaked near zero. However,

the implied marginal distribution of gender bias closely matches that produced by the

baseline model that ignores industry affiliation. The mean and variance implied by this

density are close to simple unbiased estimators of these moments.

8.5 Reporting possibilities

Figure 12 plots the pairwise posterior ranking probabilities π̂ij for gender, with firms

ordered by their rank under λ = 1. While substantial information is available regarding

relative ranks, pairwise thresholding with λ = 0.25 would again yield numerous transi-

tivity violations. Imposing transitivity yields four grades, with a large middle category

of ⋆ ⋆ ⋆. The hierarchical model with industry effects yields starker posterior contrasts.

Yet pairwise thresholding continues to yield rampant transitivity violations. Imposing

transitivity yields five grades.

Figure 13 shows the tradeoffs between DR and τ̄ estimated to arise when ranking

firms’ gender preferences. Setting λ = 0.25 yields an estimated Discordance rate of

roughly 2% in our baseline specification and roughly 1% when including industry effects.

The bottom panel of the figure reveals that the Condorcet grades obtained by setting

λ = 1 would be very informative about relative gender discrimination, yielding a rank

correlation with the underlying firm discrimination parameters in excess of 0.4 regardless

of whether industry affiliation is taken into account. The Condorcet grades are not

particularly reliable, however, yielding Discordance rates approaching 30%.

As was the case with race, ranking gender bias based upon posterior means results

in grades with informativeness and reliability similar to the Condorcet ranks. Unlike

with race, we also obtain similar gender results when naively ranking firms based upon

their unadjusted point estimates θ̂i. This finding is a reflection of the kurtosis in the

distribution of gender contact gaps, which suggests that when firms have gender prefer-

ences, those preferences manifest in large point estimates, making it easy to distinguish

such firms from their gender-neutral counterparts. Ranking on linear shrinkage estimates

performs more poorly than ranking on point estimates, which owes again to the fat tails

of G and the fact that standard James-Stein type estimators ignore dependence of the

mixing distribution on precision. As with race, ad hoc coarsenings of point estimates into

deciles or quartiles lie well within the reporting possibilities frontier, indicating they are

dominated by our grading procedure.

35



The reporting frontier for the model with industry effects lies only slightly above

that of the baseline model. However, the grades produced when setting λ = 0.25 are

substantially more informative with industry effects (τ̄ = 0.16 vs 0.12) while being slightly

more reliable (DR = 0.01 vs DR = 0.018).

9 Gender discrimination report cards

Figure 14 provides a report card for gender discrimination using the same rubric as

was used for race: firms are sorted by their Condorcet ranks and posterior means θ̄i

are listed along with credible intervals. Here, the posterior means shrink point estimates

towards zero, with substantially greater shrinkage factors for less precise observations (see

Appendix Figure F4). Consistent with the estimated distribution of θi reported in Figure

11, the posterior means suggest most firms have negligible gender preferences. However,

firms with the highest Condorcet ranks (e.g., Builders FirstSource and LKQ Auto) are

estimated to strongly prefer male applicants, while firms with the lowest Condorcet ranks

(e.g., Ascena and Nationwide) are estimated to strongly prefer female applicants.

Unlike in our previous examples, the grades that emerge when setting λ = 0.25 are not

a strict coarsening of the Condorcet ranks. Two firms—State Farm and Aramark—whose

Condorcet ranks suggest bias against male applicants, receive a middling grade of ⋆ ⋆ ⋆

as a result of the relative imprecision of their estimates. Appendix Figure F6 depicts the

relationship between the gender report card grades and firm-specific contact gap estimates

and standard errors. As was the case with race, classification boundaries are mildly

nonlinear in (θ̂i, si) space, with large standard errors tending to yield mediocre grades.

Firms assigned the grade ⋆⋆⋆ are estimated to exhibit negligible gender preferences, with

an average posterior mean of -0.01. The four depicted grades are estimated to explain

44% of the variation in proportional contact gaps.

Six firms (Builders Firstsource, LKQ Auto, State Farm, CBRE, Nationwide, and

Ascena) have absolute gender bias estimates well above the 4/5th’s rule standard. The

firm VFC, while receiving the grade ⋆ ⋆ ⋆⋆, exhibits a posterior mean just below this

threshold. Three of the four firms that received grades of ⋆ or ⋆⋆, indicating a preference

for male names, are federal contractors. Two of the four firms graded as ⋆⋆⋆⋆, indicating

a preference for female names, are federal contractors.

9.1 Industry effects

Figure 15 updates the gender report card to account for industry affiliation. The Con-

dorcet ranks that result from the model with industry effects are very similar to those

produced by the baseline model reported in Figure 14. Seven firms (Builders Firstsource,

LKQ Auto, Victoria’s Secret, Gap, Foot Locker, VFC, and Ascena) with extremal Con-
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dorcet ranks have posterior mean biases exceeding the 4/5th’s rule standard.

Setting λ = 0.25 yields five grades that are a strict coarsening of the Condorcet

ranks. Appendix Figure F10 lists the grades that result from all possible choices of λ.

The depicted grades with λ = 0.25 are estimated to explain 38% of the variation in

proportional gender contact gaps. Builders FirstSource is the only firm to receive a grade

of ⋆: its posterior mean suggests a bias against distinctively female names of 67%. The

grade ⋆ ⋆ ⋆ is comprised of firms with roughly gender neutral conduct, with an average

posterior mean θi of 0.005. In contrast, the average posterior bias against male names

among firms assigned the grade ⋆⋆⋆⋆⋆ is -40%. Appendix Figure F12 reports an alternate

grading based upon the industry codes used in Kline, Rose and Walters (2022). Those

codes, which are less informative, yield only three grades but lead similar firms to be

assigned to categories indicating strong gender preferences.

Figure 16 displays grades of industry average conduct. Only two grades emerge when

setting λ = 0.25. Apparel stores (SIC 56) is the sole industry to receive a grade of ⋆⋆,

reflecting what appears to be a strong preference for female names. The magnitude of

the posterior mean estimate is substantial, suggesting a roughly 33 log point advantage

for female names in this sector. In contrast, auto dealers / services / parts (SIC 55),

which registered large biases against Black names in Figure 9, is estimated to exhibit a

negligible bias against female names.

9.2 Misclassification

Figure 17 summarizes the reliability of the gender report card in terms of Discordance

Rates between grades. In our baseline model, the estimated share of firm pairs expected to

be misclassified between adjacent grades ranges from 8% to 13%. Between non-adjacent

grades the expected misclassification probability is estimated to be small: on the order

of 1-3%.

When accounting for industry, five grades are present, with ⋆ ⋆ ⋆ indicating gender

neutral conduct. The expected share of firms misclassified between ⋆, which suggests

discrimination against female names, and ⋆ ⋆ ⋆ is estimated to be 5.5%. However, the

expected share of firms graded as ⋆ ⋆ ⋆ ⋆ ⋆ that are less biased against men than a firm

receiving a grade of ⋆⋆⋆ is estimated to be 0.8%. Hence, the chances of erroneously being

classified as discriminating against women are higher than the chances of erroneously

being classified as discriminating against men.

10 Conclusion

We have proposed a new empirical Bayes method for ranking noisy measurements and

used it to grade the discriminatory conduct of firms in a large-scale correspondence ex-
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periment. The experiment is shown to contain a wealth of information about the relative

conduct of firms: our most granular (Condorcet) grades of discrimination against Black

names that take into account industry affiliation yield an expected correlation with the

true firm ranks of 0.59. These grades are noisy, however, resulting in (expected) mistakes

in nearly one quarter of the
(
97
2

)
= 4, 656 possible pairwise firm comparisons.

A generalization of the Condorcet scheme based on a desired 80% posterior certainty

threshold for pairwise contrasts yields report cards with three or four grades, depend-

ing on whether the model conditions on industry. These coarse grades turn out to be

substantially more reliable than the Condorcet ranks, lowering the estimated share of

firm pairs that are misordered to less than 6%. These grades are also highly informative,

offering an estimated correlation with the true firm ranks of 0.2 or greater. In addition

to conveying information about the ranking of firm conduct, the grades capture impor-

tant differences in conduct levels. Firms assigned the worst grade are estimated to favor

white applicants over Black applicants by more than 20%, while racial gaps in callbacks

among firms assigned the best grade are negligible. Similarly stark differences emerged

in a ranking of firms’ gender preferences: firms assigned extremal grades exhibit gender

contact gaps on the order of 40%, while the vast majority of firms received a middle grade

signaling minimal gender differences.

The finding of negligible contact gaps in a large group of firms provides a possibility

result for employers seeking to improve the fairness of their hiring processes. Recent re-

search points towards centralization of hiring processes as a possible means of dampening

bias in large organizations (Kline, Rose and Walters, 2022; Berson, Laouenan and Valat,

2020; Challe et al., 2022; Mocanu, 2022), a conjecture that aligns with findings in be-

havioral economics that snap judgments by individuals are especially susceptible to bias

(e.g., Agan et al., 2023). Further corroboration of this view comes from Miller (2017)’s

finding that temporary exposure to the heightened scrutiny over HR practices accom-

panying federal contractor status has persistent effects on the composition of firm hires.

Much work remains to establish which sorts of reforms to organizational practices can

improve the fairness and efficiency of corporate recruiting efforts. Releasing these data

for use by other researchers will hopefully accelerate the pace of research into strategies

for mitigating hiring discrimination.
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Figures

Figure 1: Deconvolution estimates of name-specific contact rate distributions

a) Variance-stabilized contact rates (sin−1√pi)
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Notes: This figure presents non-parametric estimates of the distribution of name-specific contact
rates. Panel (a) deconvolves transformed contact rates θ̂i = sin−1

(√
p̂i
)
, where p̂i is the contact

rate for applications sent with first name i. The hollow blue histogram shows the distribution
of estimated variance-stabilized contact rates. The red line shows a deconvolution estimate of
the population contact rate distribution. The deconvolution procedure parameterizes the log-
density as a cubic spline with five knots. The parameters are estimated by penalized maximum
likelihood, with penalization parameter chosen to match the mean and bias-corrected variance
estimate as closely as possible. The dark green mass points plot the distribution of population
contact rates estimated by non-parametric maximum likelihood (NPMLE). The vertical dashed
lines plot mean contact rates for each race and gender group of names. Panel (b) converts the
estimated distributions of variance-stabilized contact rates into distributions of contact rates pi.
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Figure 2: Name ranking exercises

a) Pairwise posterior contrasts b) Grades and discordance
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Notes: This figure summarizes the results from grading contact rates for names. Panel (a) shows
pairwise posterior ordering probabilities for all names. Posteriors are computed using the log-
spline estimate plotted in Figure 1 as the prior. Names are ordered by their rank under λ = 1.
Shading indicates the posterior probability that the contact rate for the name on the vertical
axis exceeds the contact rate for the name on the horizontal axis. Panel (b) shows estimated
Discordance Rates (DR) for an intermediate range of λ. Panel (c) plots the expectation of
Kendall’s τ rank correlation between true contact rates and grades against Discordance Rates
(DR) for a range of grades indexed by λ. The red circle highlights the DR and expected τ
corresponding to λ = 0.25. “θ̂ rank” refers to ranks based upon point estimates. “θ̄ rank”
refers to ranks based upon empirical Bayes posterior means. “θ̄dec” and “θ̄quart” refer to grades
corresponding to deciles and quartiles of these empirical Bayes posterior means. “θ̄lin rank”
refers to ranks based on linear shrinkage estimates.
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Figure 3: Posterior means and grades of first names

Notes: This figure shows posterior mean contact rates, 95% credible intervals, and assigned
grades for names. Results are shown for λ = 0.25, implying an 80% threshold for posterior
ranking probabilities. Names are ordered by their rank under λ = 1, when each name is
assigned its own grade.
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Figure 4: Deconvolution estimates of race contact penalty distributions
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Notes: This figure presents non-parametric deconvolution estimates of the distribution of firm-
specific race contact penalties along with corresponding histograms of firm-specific estimates.
Estimates are based on the model θi = sβi vi, where θi is the proportional contact gap in favor

of distinctively white names and si is the standard error of the estimate θ̂i. Blues bars in part

(i) of Panel (a) show a histogram of estimates v̂i = θ̂i/s
β̂
i , where β̂ is the GMM estimate of β.

The histogram is overlaid with the estimated distribution of vi computed with the log-spline
deconvolution procedure described in the Appendix. Part (ii) of Panel (a) plots a histogram of
θ̂i along with the corresponding log-spline and non-parametric maximum likelihood (NPMLE)
estimates of the distribution of θi. Panel (b) decomposes the standardized contact gap into
within- and between-industry components, so that vi = ηk(i)ξi, where k(i) is the industry of
firm i and the mean of the between-industry component ηk is normalized to 1. Blue bars in
part (ii) of Panel (b) show a histogram of estimates v̄k, computed as the industry mean of v̂i.
Red bars show a histogram of within-industry estimates ξ̂i = v̂i/v̄k(i). Blue and red curves
display hierarchical log-spline estimates of the distributions of ηk and ξi. Part (ii) of Panel (b)
overlays the histogram of θ̂i with the marginal distribution of θi implied by the hierarchical
log-spline estimates. Bias-corrected standard deviation estimates are computed by subtracting
the average squared standard error from the sample variance of estimated contact penalties,
then taking the square root.
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Figure 5: Posterior contrasts for race
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b) Industry effects
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Notes: This figure plots pairwise posterior contrast probabilities for firm-specific contact penal-
ties. Firms are ordered by their ranks under λ = 1, with the rank implying the largest θi is
denoted by 1. Shading indicates the posterior probability that the contact penalty for the firm
on the vertical axis exceeds the contact penalty for the firm on the horizontal axis. Firm pairs
where π̂ij > 1/(1 + 0.25) are bordered in red, indicating that pairwise optimal decision would
rank the firm on the horizontal axis below the firm on the vertical axis when λ = 0.25. The
black lines define optimal grades for this λ for the firms in the rows. Panel (a) shows results
for a baseline model without industry effects, while Panel (b) reports results from a model with
industry effects.
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Figure 6: Grades, discordance, and reporting possibilities for race

a) Grades and discordance vs. λ
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Notes: This figure summarizes informativeness and reliability of report card grades for race.
Panel (a) shows estimated Discordance Rates (DR) as a function of λ. The number on each
point indicates the number of unique grades in the underlying grading scheme. The vertical
dashed line shows results for the benchmark case of λ = 0.25. Panel (b) shows the expectation
of Kendall’s τ rank correlation between θ and assigned grades against the estimated DR for a
range of grades indexed by λ. Red circles highlight the DR and τ̄ corresponding to λ = 0.25.
“θ̂ rank” plots the τ̄ and DR associated with ranking firms based upon point estimates. “θ̄
rank” refers to ranks based upon empirical Bayes posterior means. “θ̄dec” and “θ̄quart” refer to
grades corresponding to deciles and quartiles of these empirical Bayes posterior means. “θ̄lin
rank” refers to ranks based on linear shrinkage estimates.
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Figure 7: Race report card: posterior means and grades of firms (baseline)
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Notes: This figure shows posterior mean proportional contact penalties for distinctively Black
names, 95% credible intervals, and assigned grades. Grades are shown for λ = 0.25, implying
an 80% threshold for posterior ranking probabilities. Posterior estimates come from a baseline
model without industry effects. Firms are ordered by their rank under λ = 1, when each firm
is assigned its own grade. Firms labeled with black text are federal contractors, whereas firms
in gray are not.
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Figure 8: Race report card: posterior means and grades of firms (industry effects)
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Notes: This figure shows posterior mean proportional contact penalties for distinctively Black
names, 95% credible intervals, and assigned grades from the industry random effect model.
Grades are shown for λ = 0.25, implying an 80% threshold for posterior ranking probabilities.
Firms are ordered by their rank under λ = 1, when each firm is assigned its own grade. Industry
codes listed in parentheses next to firm names. Firms labeled with black text are federal
contractors, whereas firms in gray are not.
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Figure 9: Race report card: posterior means and grades of industries
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Notes: This figure shows posterior means, 95% credible intervals, and assigned grades for
industry mean proportional contact penalties for distinctively Black names. Grades are shown
for λ = 0.25, implying an 80% threshold for posterior ranking probabilities. Each industry is
labeled by its name and two-digit SIC code.
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Figure 10: Race report card: DR in baseline and industry effects model

a) Baseline
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Notes: This figure shows mean Discordance Rates (DR) across grade pairs for the baseline
model and the model with industry effects for race. In both panels, DRg,g′ is the expected share
of pairwise comparisons between firms in grades g and g′ where the ordering implied by the
grades differs from the true ordering of conduct.
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Figure 11: Deconvolution estimates of gender contact penalty distributions
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Notes: This figure presents non-parametric deconvolution estimates of the distribution of firm-
specific gender contact penalties along with corresponding histograms of firm-specific estimates.
Estimates are based on the model θi = µ + sβi vi, where θi is the proportional contact gap in

favor of distinctively male names, si is the standard error of the estimate θ̂i, and E[vi] = 0. Blue

bars in part (i) of Panel (a) show a histogram of estimates v̂i = (θ̂i − µ̂)/sβ̂i , where µ̂ and β̂ are
the GMM estimates of µ and β. The histogram is overlaid with the estimated distribution of vi
computed with the log-spline deconvolution procedure described in the Appendix. Part (ii) of
Panel (a) plots a histogram of θ̂i along with the corresponding log-spline and non-parametric
maximum likelihood (NPMLE) estimates of the distribution of θi. Panel (b) decomposes the
standardized contact gap into within- and between-industry components, so that vi = ηk(i)+ ξi,
where k(i) is the industry of firm i and the means of both components are normalized to zero.
Blue bars in part (ii) of Panel (b) show a histogram of estimates v̄k, computed as the industry
mean of v̂i. Red bars show a histogram of within-industry estimates ξ̂i = v̂i − v̄k(i). Blue and
red curves display hierarchical log-spline estimates of the distributions of ηk and ξi. Part (ii)
of Panel (b) overlays the histogram of θ̂i with the marginal distribution of θi implied by the
hierarchical log-spline estimates.. Bias-corrected standard deviation estimates are computed by
subtracting the average squared standard error from the sample variance of estimated contact
penalties, then taking the square root.
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Figure 12: Posterior contrasts for gender
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b) Industry effects
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Notes: This figure plots pairwise posterior contrast probabilities for firm-specific gender contact
differences. Firms are ordered by their ranks under λ = 1 within ranks for λ = 0.25, with the
rank implying the largest θi is denoted by 1. Shading indicates the posterior probability that
the contact penalty for the firm on the vertical axis exceeds the contact difference for the firm
on the horizontal axis. Firm pairs where π̂ij > 1/(1 + 0.25) are bordered in red, indicating
that pairwise optimal decision would rank the firm on the horizontal axis below the firm on the
vertical axis when λ = 0.25. The black lines define optimal grades for this λ for the firms in
the rows. Panel (a) shows results for a baseline model without industry effects, while Panel (b)
reports results from a model with industry effects.
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Figure 13: Grades, discordance, and reporting possibilities for gender

a) Grades and discordance vs. λ
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Notes: This figure summarizes informativeness and reliability of report card grades for gender.
Panel (a) shows estimated Discordance Rates (DR) as a function of λ. The number on each
point indicates the number of unique grades in the underlying grading scheme. The vertical
dashed line shows results for the benchmark case of λ = 0.25. Panel (b) shows the expectation
of Kendall’s τ rank correlation between θ and assigned grades against the estimated DR for a
range of grades indexed by λ. Red circles highlight the DR and τ̄ corresponding to λ = 0.25.
“θ̂ rank” plots the τ̄ and DR associated with ranking firms based upon point estimates. “θ̄
rank” refers to ranks based upon empirical Bayes posterior means. “θ̄dec” and “θ̄quart” refer to
grades corresponding to deciles and quartiles of these empirical Bayes posterior means. “θ̄lin
rank” refers to ranks based on linear shrinkage estimates.
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Figure 14: Gender report card: posterior means and grades of firms (baseline)
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Notes: This figure shows posterior mean proportional gender contact differences between dis-
tinctively male and female names, 95% credible intervals, and assigned grades. Negative differ-
ences imply favoring female applications on average, while positive differences imply favoring
men. Grades are shown for λ = 0.25, implying an 80% threshold for posterior ranking prob-
abilities. Posterior estimates come from a baseline model without industry effects. Firms are
ordered by their rank under λ = 1, when each firm is assigned its own grade. Firms labeled
with black text are federal contractors, whereas firms in gray are not.
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Figure 15: Gender report card: posterior means and grades of firms (industry effects)
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Notes: This figure shows posterior mean proportional gender contact differences between dis-
tinctively male and female names, 95% credible intervals, and assigned grades from the industry
random effect model. Negative differences imply favoring female applications on average, while
positive differences imply favoring men. Grades are shown for λ = 0.25, implying an 80%
threshold for posterior ranking probabilities. Firms are ordered by their rank under λ = 1,
when each firm is assigned its own grade. Industry codes listed in parentheses next to firm
names. Firms labeled with black text are federal contractors, whereas firms in gray are not.
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Figure 16: Gender report card: Posterior means and grades of industries
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Notes: This figure shows posterior means, 95% credible intervals, and assigned grades for
industry mean proportional gender contact differences between distinctively male and female
names. Grades are shown for λ = 0.25, implying an 80% threshold for posterior ranking
probabilities. Each industry is labeled by its name and two-digit SIC code.

59



Figure 17: Gender report card: DR in baseline and industry effects model
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Notes: This figure shows mean Discordance Rates (DR) across grade pairs for the baseline
model and the model with industry effects for gender. In both panels, DRg,g′ is the expected
share of pairwise comparisons between firms in grades g and g′ where the ordering implied by
the grades differs from the true ordering of conduct.
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Tables

Table 1: Summary statistics for first names sample

Wald test of
Contact rate # apps # first names heterogeneity

(1) (2) (3) (4)

Male

Black 0.233 20,927 19 12.6
(0.003) [0.82]

White 0.246 20,975 19 15.8
(0.003) [0.61]

Female

Black 0.226 20,879 19 21.2
(0.003) [0.24]

White 0.254 20,862 19 19.9
(0.003) [0.34]

Estimated contact rate SD

Total 0.010

Between race/sex 0.011

Notes: This table presents summary statistics for the sample of applications used in the analysis
of first names. The table presents the mean 30-day contact rate, total number of applications
sent, and number of unique first names used for each race and sex combination. Contact rates
are reweighted to balance the distribution of names across experimental waves. Although Black
and white names were sent in pairs during the experiment, the total number of applications
across race groups is not identical because some jobs closed before both applications could be
sent. The gender of the name assigned to each application was unconditionally randomized.
The final column reports Wald tests for equality of contact probabilities across the first names
in each demographic group. Under the null hypothesis of equal contact probabilities, each test
statistic is distributed χ2(18). Corresponding p-values are reported in brackets. The estimated
contact rate SD is a bias-corrected estimate of the standard deviation of name-specific contact
rates, computed by subtracting the average squared standard error from the sample variance of
contact rate estimates then taking the square root. The between race/sex standard deviation is
a corresponding bias-corrected estimate of the variation in mean contact rates across race and
sex groups. See Appendix Table F2 for a list of first names used in the analysis.
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Table 2: Summary statistics for firm sample

Race Gender

White Black Male Female
(1) (2) (3) (4)

Contact rates 0.256 0.236 0.244 0.248
(0.004) (0.003) (0.004) (0.004)

Difference 0.020 -0.003
(0.002) (0.003)

Log difference 0.095 -0.006
(0.013) (0.020)

# Firms 97
# Jobs 10,453
# Apps 78,910

Notes: This table presents summary statistics for firm contact penalties. “White” and “Black”
refer to average firm-level contact rates for white and Black applications. “Male” and “Female”
refer to averages for male and female applications. Difference is the average contact rate differ-
ence (White minus Black, and Male minus Female). Log difference is the average of the primary
contact penalty measure θ̂i used in the analysis. Standard errors in parentheses.
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Table 3: GMM estimates of contact penalty parameters

Race Gender

No industry With industry No industry With industry
effects effects effects effects
(1) (2) (3) (4)

a) Model parameters
β 0.510 0.522 1.255 1.114

(0.190) (0.150) (0.242) (0.204)
µ 0.308 0.320 -0.009 0.000

(0.147) (0.096) (0.015) (0.017)
σv 0.207 1.234

(0.106) (0.561)
ση 0.528 0.569

(0.120) (0.191)
σξ 0.113 0.645

(0.054) (0.213)
J-statistic (d.f.) 0.101 0.087 0.011 1.280
(d. f.) (1) (2) (1) (2)

b) Contact penalty distributions
Mean of θi 0.092 0.093 -0.009 0.000

(0.011) (0.013) (0.015) (0.017)
Std. dev. of θi 0.072 0.072 0.180 0.148

(0.015) (0.015) (0.042) (0.025)
Within share 0.366 0.562

(0.234) (0.200)

Notes: This table reports generalized method of moments (GMM) estimates of the parameters
of race and gender contact penalty distributions. Panel (a) shows GMM estimates of parameters
from models for the race or gender contact penalty θi, while Panel (b) reports moments of the
distribution of θi implied by the model estimates, with standard errors computed by the Delta
method. Estimates for race in column (1) are based on the model θi = sβi vi, where θi is the
proportional contact gap in favor of distinctively-white names, E[vi|si] = µ, V[vi|si] = σ2

v , and
si is the standard error of θ̂i. Column (2) allows an industry component of the form vi = ηk(i)ξi,
where k(i) is the industry of firm i and E[ηk] = 1. Estimates for gender in column (3) are based

on the model θi = µ + sβi vi, where θi is the proportional contact gap in favor of distinctively-
male names, E[vi|si] = 0, and V[vi|si] = σ2

v . Column (4) allows an industry component of the
form vi = ηk(i)+ ξi, where E[ηk] = E[ξi] = 0. Estimates come from two-step optimally-weighted
GMM with an identity weighting matrix in the first step. Variance matrices in column (2) and

(4) are clustered by industry. The within share is
E[V[vi|ηk(i)]]

V[vi] , which equals
(σ2

η+1)σ2
ξ

σ2
ησ

2
ξ+σ2

ηµ
2+σ2

ξ
in

column (2) and
σ2
ξ

σ2
η+σ2

ξ
in column (4).
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Appendix A Extension to weighted loss

Ranking mistakes may be more costly when the magnitude of the mistake is larger.

To capture such concerns, we consider a family of loss functions that weight pairwise

concordances and discordances by the p’th power of the difference between the cardinal

biases of the two firms.

Lp (d, θ;λ) =

(
n

2

)−1 n∑
i=2

i∑
j=1

[
1 {θi > θj, di < dj} (θi − θj)

p + 1 {θi < θj, di > dj} (θj − θi)
p︸ ︷︷ ︸

discordant pairs

−

λ

(
1 {θi < θj, di < dj} (θi − θj)

p + 1 {θi > θj, di > dj} (θj − θi)
p︸ ︷︷ ︸

concordant pairs

)]
.

A loss function corresponding to the (p = 2, λ = 1) case was previously considered by

Sobel (1990). The corresponding family of risk functions take the form

Rp(d;λ) =

(
n

2

)−1 n∑
i=2

i∑
j=1

µp
jidij + µp

ij (1− eij − dij)− λµp
ji (1− eij − dij)− λµp

ijdij,

where µp
ij = EB [max{(θi − θj), 0}p]. Note that limp→0 µ

p
ij = πij. Hence, one can think of

our baseline risk function in (5) as a limiting case of Rp as p approaches zero.

An earlier version of this paper (Kline, Rose and Walters, 2023) reports rankings of

both first names and firms for the case where p = 2 (“square-weighted loss”). These

rankings tended to yield more grades at each value of λ than arise under binary (p = 0)

loss. This phenomenon arises because under square weighting finer classifications yield

only small mistakes on average, which give rise to correspondingly small expected losses.

When working with p-weighted loss a corresponding weighted version of the condi-

tional discordance rate can be employed:

DRp
g,g′ =

∑n
i=2

∑i−1
j=1 1 {d∗i = g} 1

{
d∗j = g′

}
EB [max{(θi − θj), 0}p]∑n

i=2

∑i−1
j=1 1 {d∗i = g} 1

{
d∗j = g′

}
EB [(θi − θj)p]

=

∑n
i=2

∑i−1
j=1 1 {d∗i = g} 1

{
d∗j = g′

}
(1− µp

ij)∑n
i=2

∑i−1
j=1 1 {d∗i = g} 1

{
d∗j = g′

}
mp

ij

,

where mp
ij = EB [(θi − θj)

p] . The p-weighted discordance rate nests the corresponding

unweighted rate as DR0
g,g′ = DRg,g′ . For any p > 0, DRp

g,g′ is guaranteed to lie in the

unit interval.
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Appendix B Proofs of propositions

This section provides proofs of the propositions discussed in Section 3.6, which are re-

stated here for completeness.

Proposition 1 (λ-Condorcet Criterion). Suppose that firm i satisfies πij > (1+λ)−1 ∀ j ̸=
i. Then d∗i > d∗j ∀ j ̸= i. Moreover, suppose that firm k satisfies πik > (1 + λ)−1 and

πkj > (1 + λ)−1 ∀ j ̸= i, j ̸= k, then d∗i > d∗k > d∗j ∀ j ̸= i, j ̸= k.

Proof. First, we establish that no firm can be tied with firm i. Suppose ∃ j s.t. dj = di =

d. Let d̃ = inf{{d′ ∈ d∗(λ) s.t. d′ > d} ∪ {∞}}. Then changing firm i’s grade to a value

in (d, d̃) yields strictly lower loss, because
∑

j ̸=i s.t. dj=d πji − λπij < 0, and comparisons

between i and all other firms j s.t. dj ̸= d are unaffected.

Now suppose ∃ d ∈ d∗(λ) s.t. d > di. Let d′ = inf{d ∈ d∗(λ) s.t. d > di}. Then

∀j s.t. dj = d′, the risk of re-assigning di = d′ + ϵ < inf{{d ∈ d∗(λ) s.t. d > d′} ∪ {∞}}
is strictly lower because

∑
j ̸=i s.t. dj=d′ πji − λπij < 0 <

∑
j ̸=i s.t. dj=d′ πij − λπji, and

comparisons between i and all other firms j s.t. dj ̸= d′ are unaffected. Since the same

argument applies to firm k removing firm i from set of firms under consideration, the

proof of the second part of the claim is identical.

Proposition 2 (λ-Smith criterion). Let S denote a collection of firms exhibiting the

following dominance property: πij > (1 + λ)−1 ∀i ∈ S, j /∈ S. Then the top graded firms

must be a member of S.

Proof. First, note that if S is a singleton, then Proposition 1 applies directly. Otherwise,

let d̃ = sup{di s.t. i ∈ S} and let S̄ denote the set {i ∈ S s.t. di = d̃}. Suppose ∃ j /∈
S s.t. dj > d̃. Let d′ = inf{d ∈ d∗(λ) s.t. d > d̃} and S denote the set {j /∈ S s.t. dj = d′}.
Then swapping grades such that all firms in S̄ receive grade d′ and all firms in S receive

grade d̃ must decrease risk, because
∑

i∈S̄
∑

j∈S πji − λπij < 0 <
∑

i∈S̄
∑

j∈S πij − λπji,

comparisons between all firms within S̄ and S are unaffected, and comparisons between

all firms k /∈ {S̄ ∪ S} are unaffected. Thus no firm j /∈ S may be ranked above the top

graded member of S.

Proposition 3 (Unordered λ-Smith candidates are tied). Let S denote a collection of

firms exhibiting the following dominance property: πij > (1 + λ)−1 ∀i ∈ S, j /∈ S.
Moreover, suppose πij < (1 + λ)−1 ∀(i, j) ∈ S. Then all firms in S receive the highest

grade.

Proof. First, we show that all firms j /∈ S must be ranked below every member of S.
Suppose not. Let d′ = inf{dj s.t. j /∈ S,∃ i ∈ S s.t. dj > di}, S = {j /∈ S s.t. dj = d′},
d̃ = sup{di s.t. i ∈ S, di < d′}, S̄ = {i ∈ S s.t. di = d̃}. Then setting grades so that all

firms in S receive a grade m ∈ (d′, d̃) and all firms in S̄ receive grade d′ must decrease
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risk because
∑

i∈S̄
∑

j∈S πji − λπij < 0 <
∑

i∈S̄
∑

j∈S πij − λπji, implying it is optimal to

rank all firms in S̄ above those in S. Moreover,
∑

i∈S̄
∑

j∈S s.t. dj=d′ πji−λπij > 0 implies

that it is optimal to tie firms in S̄ with firms in S that already have grade d′, while∑
j∈S
∑

i∈S s.t. di=d′ πji−λπij < 0 implies it is optimal to rank any firms in S that already

have grade d′ above those firms /∈ S reassigned to grade m, and
∑

i∈S̄
∑

j /∈S s.t. dj=d̃ πji −
λπij < 0 implies it is optimal to rank firms in S̄ above any firms /∈ S that currently have

grade d̃. Comparisons to all firms with grades higher than d′ are unaffected, as well as to

any firms with grades below d̃. The top grades thus consist exclusively of firms in S. To
see that they also must be tied, note that because πji − λπij > 0 ∀(i, j) ∈ S, collapsing
any two adjacent grades for firms in S must decrease risk.
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Appendix C Computing posteriors

This appendix details computation of posterior distributions for the firm contact gap

analysis of Section 7. Computation of posteriors for the name contact rate analysis of

Section 5 is a special case of this framework setting the dependence parameter β to zero

and the standard error si for name i to (4Ni)
−1. Under the model in (8), the posterior

density for vi = θi/s
β
i given Yi = (θ̂i, si) can be written

fv(x|Yi;Gv, β) =
L(θ̂i|vi = x, si; β)dGv(x)∫
L(θ̂i|vi = u, si; β)dGv(u)

,

L(θ̂i|vi = x, si; β) =
1

s1−β
i

ϕ

(
(θ̂i/s

β
i )− x

s1−β
i

)
.

Taking Ĝv as a deconvolution estimate of Gv and β̂ as a GMM estimate of β, posterior

means for θi are computed as sβ̂i ×
∫
xfv(x|Yi; Ĝv, β̂)dx, while the lower and upper limits

of 95% credible intervals are given by the 2.5th and 97.5th percentiles of the posterior

cumulative distribution P(t|θ̂i, si; Ĝv) =
∫ t/sβ̂i
−∞ fv(x|Yi; Ĝv, β̂)dx.

We also use Ĝv and β̂ to compute estimates of the matrix of pairwise posterior ranking

probabilities πij. The oracle contrast probabilities are:

πij = Pr(θi > θj|Yi, Yj;Gv, β)

= Pr((si/sj)
βvi > vj|Yi, Yj;Gv, β)

=

∫ ∞

−∞

∫ (si/sj)
βx

−∞
fv(x|Yi;Gv, β)fv(u|Yj;Gv, β)dudx.

We plug Ĝv and β̂ into these formulas to construct empirical Bayes posterior contrast

probabilities π̂ij by numerical integration. Substituting with π̂ij for πij in (5), the grades

are computed by minimizing the posterior expected loss subject to the constraints in (4)

using Gurobi.

C.1 Industry effects

Posteriors for the hierarchical industry effects model of Section 6.4 condition on the data

for all firms in an industry. Let Yk denote the 2nk×1 vector of estimates θ̂i and standard

errors si for all firms in industry k, and let ξξξk denote the nk × 1 vector of within-industry

deviations ξi for all firms in this industry. The joint posterior density for ξξξk and the
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industry effect ηk at the point where ηk = x and ξξξk = z = (z1, ...., znk
)′ is given by:

fη,ξξξ(x, z|Yk;Gη, Gξ, β) =

[∏
i:k(i)=k L(θ̂i|vi = x× zi, si; β)dGξ(zi)

]
dGη(x)∫

u

∫
t

[∏
i:k(i)=k L(θ̂i|vi = u× ti, si; β)dGξ(ti)

]
dGη(u)

.

We form empirical Bayes joint posteriors given by fη,ξξξ(x, z|Yk; Ĝη, Ĝξ, β̂), where β̂ is

the GMM estimate of β from column (2) of Table 3, and Ĝξ and Ĝη are hierarchical

deconvolution estimates from panel (a) of Figure 5. We then integrate over these joint

posteriors by simulation to compute posterior means and quantiles for each random effect

along with pairwise posterior probabilities πij for the model with industry effects.

C.2 Between grade variance

Letting M denote the total number of grades, the (firm-weighted) between grade variance

of θi can be written

M∑
g=1

wgθ̄
2
g −

(
M∑
g=1

wgθ̄g

)2

=
M∑
g=1

wg (1− wg) θ̄
2
g −

M∑
g=1

∑
g′ ̸=g

wgwg′ θ̄gθ̄g′ ,

where θ̄g =
∑n

i=1 Digθi∑n
i=1 Dig

, Dig = 1{d∗i = g} is an indicator for being assigned grade g ∈ [M ],

and wg = n−1
∑n

i=1Dig gives the share of firms assigned grade g.

We compute a Bayes unbiased estimate of each θ̄g by simply averaging the firm specific

posterior firm means E [θi|Yi] within grade. The posterior mean estimate of each θ̄2g is

slightly harder to compute because

θ̄2g =

∑n
i=1Digθ

2
i

(
∑n

i=1Dig)
2 +

∑n
i=1

∑
i′ ̸=i DigDi′gθiθi′

(
∑n

i=1 Dig)
2

= (nwg)
−2

{
n∑

i=1

Digθ
2
i +

n∑
i=1

∑
i′ ̸=i

DigDi′gθiθi′

}
.

Our posterior mean estimate of this quantity is computed analogously as

E
[
θ̄2g |Yi

]
= (nwg)

−2

{
n∑

i=1

DigE
[
θ2i |Yi

]
+

n∑
i=1

∑
i′ ̸=i

DigDi′gE [θi|Yi]E [θi′ |Yi′ ]

}

= (nwg)
−2


n∑

i=1

DigE
[
θ2i |Yi

]
+

(
n∑

i=1

DigE [θi|Yi]

)2

−
n∑

i=1

DigE [θi|Yi]
2

 ,

where each E [θi|Yi] and E [θ2i |Yi] is evaluated numerically using the relevant estimated Ĝ.
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Appendix D Hierarchical log-spline estimator

We extend the empirical Bayes log-spline deconvolution approach from Efron (2016), and

corresponding penalized maximum likelihood estimator, to separately estimate within-

and between-industry distributions of race and gender contact gaps. The between-

industry distributionGη is approximated with a discrete probability mass function defined

on a set of Mη support points {η̄1, ...., η̄Mη}. The mass at the m-th support point η̄m is

given by

gη,m(αη) = exp

(
q′η,mαη − log

(
Mη∑
ℓ=1

exp(q′η,ℓαη)

))
,

where qη,m is a 5 × 1 vector of values of natural cubic spline basis functions for point

m (as detailed in Efron 2016) and αη is a 5 × 1 vector of coefficients. Similarly, we

approximate the within-industry distribution Gξ with a discrete distribution defined on

support {ξ̄1, ...., ξ̄Mξ
}, with mass function

gξ,m(αξ) = exp

q′ξ,mαξ − log

 Mξ∑
ℓ=1

exp(q′ξ,ℓαξ)


for 5× 1 spline basis and coefficient vectors qξ,m and αξ, respectively.

With this specification of the mixing distributions the joint likelihood contribution

for firms in industry k under our model for race contact gaps in Section 6.4 is given by:

L
(
θ̂k|sk;αη, αξ

)
=

Mη∑
ℓ=1

gη,ℓ(αη)

 ∏
i:k(i)=k

 Mξ∑
m=1

gξ,m(αξ)
1

s1−β
i

ϕ

(
(θ̂i/s

β
i )− η̄ℓξ̄m

s1−β
i

),

where θ̂k and sk are vectors collecting the θ̂i and si for firms with k(i) = k. The likelihood

function for gender gaps adapts this expression to the alternative model outlined in

Section 8.

Following Efron (2016), we estimate the parameters αη and αξ by penalized maximum

likelihood. Our approach extends the Efron (2016) estimator to add a separate penalty for

the within- and between-industry spline coefficients. Specifically, the parameter estimates

are computed as:

(α̂η, α̂ξ) = arg max
(αη ,αξ)

K∑
k=1

logL
(
θ̂k|sk;αη, αξ

)
− cη

√
α′
ηαη − cξ

√
α′
ξαξ.

In models with industry effects the number of support points is set equal to Mη = Mξ =

200, with points equally spaced on the supports of ηk and ξi. Models without industry

effects use Mξ = 1, 000 and Mη = 1 with η̄1 = 1 for race and η̄1 = 0 for gender, so that

ηk has a degenerate distribution at unity (or zero for gender).
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The upper limit of the support for each component is set equal to the maximum of

the empirical distribution of corresponding estimates or five GMM-estimated standard

deviations above the GMM-estimated mean, whichever is larger. For gender, the lower

limit of the support is similarly set equal to the minimum of the empirical distribution and

five standard deviations below the mean; for race we set the lower support limits equal

to zero. To limit the influence of outliers, we truncate the support of each component

in each model to not exceed seven GMM-estimated standard deviations from the GMM-

estimated mean. Since the scales of the two mixing distributions are not separately

identified we impose the constraint
∑

m gη,m(αm)η̄m = 1 for race. For gender we impose

corresponding constraints normalizing the means of both ξi and ηk to zero.

The penalty terms cη and cξ are calibrated so that mean contact ratio and variances of

the within- and between-industry components come as close as possible to matching GMM

estimates of these same quantities. Specifically, we compute the log-spline estimator for

a grid of values of the penalty parameters and compute model-implied moments of the

resulting distribution, then compute the quadratic distance between log-spline and GMM

moment estimates (scaled by the inverse variance matrix of the GMM estimates). We

then choose the value of the penalty parameter that minimizes this distance. The model

without industry effects chooses cξ to minimize the quadratic difference between model-

implied and GMM estimates of the mean and total variance of contact gaps (or just the

variance for gender, since the mean of the standardized gender gap is normalized to zero).

In practice all parameters match well, as can be seen by comparing Tables 3 and F4.
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Appendix E Monte Carlo evaluation of grades

To evaluate the composite performance of the grading procedure, a Monte Carlo exercise

was conducted that conditions on the standard errors and industries of the 97 firms used

in the racial discrimination report card. Each simulation draws a new θi and θ̂i for each

firm from the models described in Section 6. Optimal grades are then computed under

λ = 0.25, both when treating the distribution Gv as known (to evaluate oracle risk) and

when re-estimating Gv in each simulation (to evaluate empirical risk).

Table E1 reports the results of 250 simulations. Column (1) assumes Gv obeys the

baseline log-spline form described in Section 6.3 and reported in the upper panel of

Figure 4. The oracle grading rule d∗ computes the optimal grades given knowledge of the

true Gv underlying the simulation. The empirical rule d̂∗ computes the optimal grades

using an estimated Gv obtained by applying GMM followed by the log-spline procedure in

each simulation draw.16 Column (2) fits a log-normal Gv via the method of moments (i.e.,

matching the mean and bias corrected variance) and simulates from this distribution. The

empirical rule relies on a GMM step in each simulation draw followed by a corresponding

method of moments step that recovers the log-normal distribution parameters from the

mean and bias corrected variance of estimated residuals. Column (3) uses estimates from

the model with industry effects in Section 6.4 as the prior and the empirical rule re-

estimates the model in each simulation via GMM followed by the hierarchical log-spline

method.

For both the oracle and empirical procedures, we report the expected rank correlation,

discordance proportion, and loss evaluated under the true mixing distribution Gv. Regret

is expressed as the average difference between the losses produced by the empirical and

oracle rules. In all cases the regret is small (ranging from 0.012 to 0.017) indicating

that the EB grades are nearly Bayes optimal. The slightly larger regret generated by

the industry effects specification reflects that it is more difficult to adapt to the richer

parameter space entertained by the hierarchical model.

The final panel of Table E1 reports the average expected rank correlation and dis-

cordance proportion of the empirical and oracle procedures when evaluated under the

estimated Ĝv. The posterior mean estimates of the τ and DP of the oracle rule produced

under Ĝv are roughly unbiased, differing only slightly from their estimates under Gv.
17

This finding suggests the π̂ij provide accurate estimates of the πij. In contrast, the pos-

terior expected τ and DP of the empirical rule, when computed under Ĝv, tend to be

16GMM estimation was initialized at the true parameters and optimized using a trust region reflective
search procedure. In both the initial (unweighted) step and the second (optimally weighted) step we
capped the procedure at 10 iterations.

17In the industry effects specification the estimates under Ĝv are slightly pessimistic, suggesting a
lower τ and higher DP for the oracle rule than actually prevails under Gv. This phenomenon emerges
because in roughly 12% of the simulations GMM finds no within industry component. We throw such
simulations out, leading to a mild selection bias.
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overly optimistic. This optimism bias results from the fact that the empirical grades are

highly nonlinear functions of the π̂ij. For reference, we also report the standard deviation

of these biases across Monte Carlo simulations. Dividing these standard deviations by√
250 ≈ 15.8 yields a pair of standard errors on the expected bias that can be used to

assess whether the average biases are distinguishable from simulation error.

In the baseline specification, the τ̄ of the empirical grades is biased up by about 0.036,

while the DR is biased down by roughly 0.018. While the standard deviation of each bias

is large, the average biases are both statistically distinguishable from simulation error at

the 1% level. These biases do not seem to be driven by over-parameterization of the log-

spline: the more parsimonious log-normal model yields almost identical mean biases and

greater variability of bias. The model with industry effects exhibits a similar degree of

over-optimism but is more precise than the simpler one level models, yielding an average

rank correlation estimate that is biased up by 0.023 and an estimated discordance rate

that is biased down by 0.011. The standard deviation of both biases is roughly 1/3 smaller

than found with the baseline procedure, suggesting that the industry effects model yields

error rate estimates that are both more accurate and precise.

Notably, the optimism bias in the estimated DR is driven in part by its lower bound of

zero, which generates a skewed distribution of estimation errors EĜ[τ(d̂
∗, θ)]−EG[τ(d̂

∗, θ)].

In the industry model the 25th, 50th, and 75th percentiles of these errors are -0.017, -

0.006, and -0.001 respectively. Hence, the median bias of the DR estimate is 0.006, which

is roughly half its mean bias of 0.011.

In sum, the grades produced by EB procedure appear to be nearly optimal in the

sense of producing risk close to that of a Bayesian oracle. The EB estimates of reliability

and informativeness are somewhat over-optimistic. However, this optimism bias tends

to be small, particularly for the industry effects model. If the bias in our data were the

same as the average bias in our Monte Carlo DGP, then the estimated Discordance Rate

of 5.6% in our industry effects model of race gaps would need to be adjusted up to 6.7%.
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Table E1: Monte Carlo simulations

Baseline Log-normal Industry effects

Oracle risk
E[EG[τ(d

∗, θ)]] 0.191 0.209 0.385
E[EG[DP (d∗, θ)]] 0.042 0.047 0.053
E[EG[R(d∗, θ;λ = 0.25)]] -0.016 -0.017 -0.056

Empirical risk

E[EG[τ(d̂
∗, θ)]] 0.212 0.203 0.316

E[EG[DP (d̂∗, θ)]] 0.063 0.060 0.058

E[EG[R(d̂∗, θ;λ = 0.25)]] -0.006 -0.006 -0.035

Regret

E[EG[R(d̂∗, θ;λ = 0.25)−R(d∗, θ;λ = 0.25)]] 0.010 0.011 0.021

Estimated risk components
E[EĜ[τ(d

∗, θ)]] 0.192 0.203 0.333

E[EĜ[τ(d̂
∗, θ)]] 0.248 0.238 0.339

V(EĜ[τ(d̂
∗, θ)]− EG[τ(d̂

∗, θ)])0.5 0.059 0.064 0.054
E[EĜ[DP (d∗, θ)]] 0.042 0.050 0.080

E[EĜ[DP (d̂∗, θ)]] 0.045 0.042 0.047

V(EĜ[DP (d̂∗, θ)]− EG[DP (d̂∗, θ)])0.5 0.029 0.032 0.027

Notes: This table reports the results of 250 Monte Carlo evaluations of the performance of the
grading procedure. Here EG denotes integration against the posterior distribution of θ given
the oracle prior G and θ̂ while E denotes integration against simulated draws of θ̂. EĜ denotes

integration against the posterior distribution of θ given the estimated prior Ĝ and θ̂. V denotes
the variance across simulation draws. The first panel reports the expected rank correlation,
discordance proportion, and risk of an oracle rule that forms grades using λ = 0.25. The second
panel reports the same statistics for a rule that relies on an estimated prior in each simulation.
Regret is the expected difference in risk between the empirical rule and the oracle rule. The final
panel reports average expected rank correlations and discordance proportions of the empirical
rule evaluated under the estimated Ĝ instead of the true G, as well as the standard deviation
of the difference between the two evaluations for the empirical rule. Column (1) simulates data
from the prior estimated in Section 6.3. Column (2) is the same but assumes that Gv is log-
normal, both for simulating data and estimating G in each simulation. Column (3) simulates
data from the model including industry effects described in Section 6.4.
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Appendix F Additional Figures and Tables

Table F2: First names assigned by race and gender

Black male White male Black female White female

Name Source Name Source Name Source Name Source
(1) (2) (3) (4) (5) (6) (7) (8)

1 Antwan NC Adam NC Aisha Both Allison BM
2 Darnell BM Brad Both Ebony Both Amanda NC
3 Donnell NC Bradley NC Keisha BM Amy NC
4 Hakim BM Brendan Both Kenya BM Anne BM
5 Jamal Both Brett BM Lakeisha NC Carrie BM
6 Jermaine Both Chad NC Lakesha NC Emily Both
7 Kareem Both Geoffrey BM Lakisha Both Erin NC
8 Lamar NC Greg BM Lashonda NC Heather NC
9 Lamont NC Jacob NC Latasha NC Jennifer NC
10 Leroy BM Jason NC Latisha NC Jill Both
11 Marquis NC Jay BM Latonya Both Julie NC
12 Maurice NC Jeremy NC Latoya Both Kristen Both
13 Rasheed BM Joshua NC Lawanda NC Laurie BM
14 Reginald NC Justin NC Patrice NC Lori NC
15 Roderick NC Matthew Both Tameka NC Meredith BM
16 Terrance NC Nathan NC Tamika Both Misty NC
17 Terrell NC Neil BM Tanisha BM Rebecca NC
18 Tremayne BM Scott NC Tawanda NC Sarah Both
19 Tyrone Both Todd BM Tomeka NC Susan NC

Notes: This table lists the first names assigned by race and gender and their sources. “BM”
indicates that the name appeared in original set of nine names used for each group in Bertrand
and Mullainathan (2004). “NC” indicates the name was drawn from data on North Carolina
speeding infractions and arrests. “Both” indicates the name appeared in both sources. Names
from N.C. speeding tickets were selected from the most common names where at least 90% of
individuals are reported to belong to the relevant race and gender group.
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Table F3: Industries represented in firm sample

# Firms # Jobs # Apps
(1) (2) (3)

2-digit SIC industry (code)

Food products (20) 5 470 3,333
Manufacturing (24-35) 4 382 2,931
Freight / transport (42-47) 4 458 3,300
Communications (48) 4 407 2,855
Electric / gas (49) 3 320 2,419
Wholesale trade (50-51) 8 817 6,186
Building materials (52) 3 377 2,755
General merchandise (53) 12 1,355 10,231
Food stores (54) 3 305 2,316
Auto dealers / services / parts (55) 9 1,016 7,857
Apparel stores (56) 5 550 4,303
Home furnishing stores (57) 3 351 2,708
Eating / drinking (58) 4 500 4,000
Other retail (59) 6 715 5,482
Banks / securities (61-64) 6 575 4,280
Accommodation / real estate (65-70) 4 397 3,024
Personal / business services (72-73) 5 550 4,177
Repair services (75-76) 3 340 2,551
Health and engineering services (80-87) 6 568 4,202

Notes: This table describes the number of firms in each two-digit SIC industry in the firm sam-
ple, along with the total number of jobs sampled and applicants sent. Industries were assigned
using the most commonly reported SIC code of establishments listed in the InfoGroup Historical
Datafiles database for 2019. In cases where InfoGroup reports a large share of establishments
in multiple industries, we use the code that best reflects the jobs sampled in the experiment
and ensures peer firms are grouped together. The resulting codes differ in 19 cases from those
used in Kline, Rose and Walters (2022), which used SIC codes assigned before the experiment
was conducted. Some industry codes are grouped to ensure that each category includes at least
three firms. Labels for grouped industries were chosen to reflect the 2-digit codes of the firms
actually included, rather than all potential industries in the grouping.
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Table F4: Deconvolution estimates of random effect distributions

No industry
effects With industry effects

Contact Industry Firm Contact
penalty (θi) effect (ηk) effect (ξi) penalty (θi)

(1) (2) (3) (4)

a) Race estimates
Mean 0.098 1.000 0.300 0.088

(0.010) - (0.053) (0.016)
Std. Dev. 0.076 0.619 0.115 0.076

(0.012) (0.186) (0.038) (0.019)
Skewness 2.027 1.365 1.611 2.885

(0.457) (0.800) (0.865) (0.918)
Excess kurtosis 7.610 0.384 8.320 15.369

(3.799) (2.406) (6.045) (12.445)

b) Gender estimates
Mean -0.009 0.000 0.000 0.000

(0.000) - - (0.008)
Std. Dev. 0.184 0.644 0.686 0.163

(0.037) (0.257) (0.191) (0.035)
Skewness -0.469 -3.094 0.702 -1.296

(2.378) (1.597) (1.116) (1.657)
Excess kurtosis 29.680 11.316 1.654 22.735

(24.073) (5.802) (3.137) (7.822)

Notes: This table reports estimated moments of the distributions of industry and firm effects
for race and gender contact gaps. Results are derived from hierarchical log-spline deconvolution
estimates, with spline parameters estimated by penalized maximum likelihood. Panel (a) dis-
plays results for race, while Panel (b) shows results for gender. Standard errors come from 1,000
iterations of a parametric bootstrap procedure that resamples from the estimated mixing distri-
bution. Each bootstrap trial takes a draw of the latent parameters from the full-sample mixing
distribution estimate and draws normally-distributed estimation error using firm-specific stan-
dard errors. We then re-estimate the mixing distribution in each trial and compute moments
of the resulting estimate. Standard errors are standard deviations of these moment estimates
across bootstrap trials.
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Table F5: Race discrimination: Detailed results by firm

Baseline model Industry effect model

Firm # Post. Post. Cond. Post. Post. Cond.

(SIC group) apps p̂w p̂b θ̂i Mean CI Grd rank Mean CI Grd rank

Genuine Parts (Napa

Auto) (55)

966 0.33

(0.03)

0.24

(0.03)

0.33

(0.07)

0.25 [0.12,

0.34]

1 1 0.23 [0.14,

0.35]

1 4

AutoNation (55) 869 0.14

(0.03)

0.09

(0.02)

0.43

(0.13)

0.23 [0.08,

0.45]

1 2 0.29 [0.15,

0.44]

1 1

Costco (53) 1000 0.07

(0.02)

0.05

(0.01)

0.38

(0.28)

0.19 [0.03,

0.38]

2 3 0.13 [0.05,

0.27]

2 22

Nationwide (61-64) 455 0.09

(0.03)

0.06

(0.02)

0.4

(0.22)

0.19 [0.04,

0.4]

2 4 0.10 [0.03,

0.22]

3 29

Builders FirstSource

(24-35)

581 0.07

(0.02)

0.05

(0.02)

0.35

(0.29)

0.19 [0.03,

0.37]

2 5 0.12 [0.04,

0.29]

2 25

CVS Health (59) 787 0.05

(0.02)

0.04

(0.01)

0.34

(0.24)

0.18 [0.03,

0.35]

2 6 0.28 [0.08,

0.49]

1 2

Stanley Black &

Decker (24-35)

790 0.05

(0.02)

0.04

(0.02)

0.17

(0.31)

0.17 [0.02,

0.34]

2 7 0.12 [0.03,

0.28]

2 24

Jones Lang LaSalle

(65-70)

577 0.07

(0.02)

0.05

(0.02)

0.3

(0.23)

0.17 [0.03,

0.33]

2 8 0.11 [0.03,

0.29]

2 26

Aramark (72-73) 935 0.07

(0.02)

0.05

(0.02)

0.3

(0.19)

0.16 [0.03,

0.32]

2 9 0.10 [0.03,

0.24]

3 28

O’Reilly Automotive

(55)

973 0.34

(0.03)

0.26

(0.03)

0.27

(0.08)

0.16 [0.06,

0.32]

2 10 0.21 [0.11,

0.32]

1 8

Dean Foods (20) 295 0.14

(0.05)

0.11

(0.04)

0.24

(0.24)

0.16 [0.03,

0.32]

2 11 0.09 [0.03,

0.19]

3 31

Tractor Supply (50-51) 943 0.2

(0.03)

0.15

(0.03)

0.29

(0.11)

0.16 [0.05,

0.33]

2 12 0.09 [0.03,

0.22]

3 35

Advance Auto Parts

(55)

967 0.28

(0.03)

0.21

(0.03)

0.29

(0.11)

0.16 [0.05,

0.32]

2 13 0.24 [0.12,

0.36]

1 3

VFC (North Face /

Vans) (56)

791 0.18

(0.04)

0.14

(0.03)

0.26

(0.09)

0.15 [0.06,

0.3]

2 14 0.19 [0.07,

0.31]

1 9

State Farm (61-64) 481 0.05

(0.02)

0.08

(0.04)

-0.54

(0.44)

0.16 [0.01,

0.34]

2 15 0.12 [0.03,

0.24]

2 23

GameStop (57) 790 0.06

(0.02)

0.05

(0.02)

0.17

(0.21)

0.14 [0.02,

0.28]

2 16 0.15 [0.04,

0.38]

2 18

Rite Aid (59) 962 0.22

(0.03)

0.17

(0.03)

0.24

(0.08)

0.14 [0.05,

0.27]

2 17 0.18 [0.06,

0.29]

2 11

Ascena (Ann Taylor /

Loft) (56)

590 0.35

(0.04)

0.28

(0.04)

0.24

(0.09)

0.14 [0.05,

0.26]

2 18 0.18 [0.06,

0.3]

2 10

CBRE (65-70) 597 0.04

(0.02)

0.03

(0.02)

0.18

(0.19)

0.14 [0.02,

0.27]

2 19 0.10 [0.03,

0.25]

3 30

UGI (49) 546 0.11

(0.03)

0.09

(0.03)

0.22

(0.15)

0.14 [0.03,

0.26]

2 20 0.09 [0.03,

0.25]

3 32

PepsiCo (20) 916 0.05

(0.02)

0.04

(0.02)

0.2

(0.14)

0.13 [0.03,

0.24]

2 21 0.07 [0.02,

0.15]

3 43

Comcast (48) 231 0.42

(0.07)

0.34

(0.06)

0.22

(0.1)

0.13 [0.04,

0.23]

2 22 0.07 [0.02,

0.19]

3 44

Goodyear (55) 387 0.08

(0.04)

0.07

(0.03)

0.19

(0.14)

0.13 [0.02,

0.24]

2 23 0.23 [0.1,

0.37]

1 5

Estee Lauder (72-73) 579 0.14

(0.03)

0.12

(0.03)

0.14

(0.17)

0.13 [0.02,

0.24]

2 24 0.09 [0.03,

0.19]

3 33

Marriott (65-70) 964 0.16

(0.03)

0.13

(0.03)

0.19

(0.12)

0.12 [0.03,

0.22]

2 25 0.08 [0.02,

0.2]

3 39

Universal Health

(80-87)

586 0.32

(0.04)

0.27

(0.04)

0.19

(0.08)

0.12 [0.03,

0.2]

2 26 0.06 [0.02,

0.13]

3 58

Pilot Flying J (55) 993 0.36

(0.03)

0.3

(0.03)

0.18

(0.08)

0.11 [0.04,

0.2]

2 27 0.17 [0.09,

0.27]

2 12

Gap (56) 996 0.33

(0.04)

0.27

(0.04)

0.17

(0.06)

0.11 [0.04,

0.19]

2 28 0.15 [0.05,

0.24]

2 15

Continued on next page

15



Disney (incl. stores)

(59)

858 0.09

(0.02)

0.1

(0.03)

-0.12

(0.24)

0.12 [0.01,

0.25]

2 29 0.22 [0.05,

0.41]

1 7

Murphy USA (55) 927 0.3

(0.03)

0.25

(0.03)

0.17

(0.08)

0.11 [0.03,

0.19]

2 30 0.17 [0.08,

0.26]

2 13

Republic Services (49) 943 0.22

(0.03)

0.19

(0.03)

0.17

(0.08)

0.11 [0.03,

0.19]

2 31 0.07 [0.02,

0.19]

3 48

CarMax (55) 775 0.14

(0.03)

0.14

(0.03)

0.05

(0.17)

0.11 [0.01,

0.23]

2 32 0.22 [0.07,

0.38]

1 6

AT&T (48) 893 0.13

(0.02)

0.11

(0.02)

0.11

(0.14)

0.11 [0.02,

0.21]

2 33 0.08 [0.02,

0.17]

3 38

DISH (48) 771 0.28

(0.04)

0.25

(0.04)

0.13

(0.12)

0.11 [0.02,

0.21]

2 34 0.07 [0.02,

0.16]

3 41

Cardinal Health

(50-51)

974 0.23

(0.03)

0.2

(0.03)

0.14

(0.11)

0.11 [0.02,

0.2]

2 35 0.07 [0.03,

0.14]

3 40

Best Buy (57) 920 0.18

(0.03)

0.16

(0.03)

0.14

(0.11)

0.11 [0.02,

0.2]

2 36 0.11 [0.03,

0.26]

3 27

Dick’s (59) 975 0.38

(0.04)

0.32

(0.03)

0.15

(0.06)

0.10 [0.04,

0.17]

2 37 0.14 [0.05,

0.22]

2 16

AutoZone (55) 1000 0.38

(0.04)

0.33

(0.03)

0.15

(0.06)

0.10 [0.04,

0.17]

2 38 0.15 [0.08,

0.23]

2 14

Pizza Hut (58) 1000 0.42

(0.04)

0.36

(0.04)

0.14

(0.06)

0.10 [0.04,

0.16]

2 39 0.07 [0.03,

0.18]

3 45

Hertz (75-76) 786 0.24

(0.04)

0.21

(0.03)

0.13

(0.09)

0.10 [0.02,

0.18]

2 40 0.06 [0.02,

0.12]

3 60

Dillard’s (53) 925 0.34

(0.03)

0.3

(0.03)

0.14

(0.05)

0.10 [0.04,

0.16]

2 41 0.06 [0.03,

0.13]

3 53

Bath & Body Works

(59)

990 0.31

(0.03)

0.27

(0.03)

0.14

(0.06)

0.10 [0.03,

0.16]

2 42 0.13 [0.04,

0.22]

2 17

Walgreens (59) 910 0.41

(0.04)

0.35

(0.04)

0.14

(0.06)

0.09 [0.03,

0.16]

2 43 0.13 [0.04,

0.22]

2 21

JPMorgan Chase

(61-64)

981 0.06

(0.02)

0.07

(0.02)

-0.19

(0.22)

0.10 [0.01,

0.22]

2 44 0.08 [0.02,

0.17]

3 34

LKQ Auto (50-51) 587 0.23

(0.04)

0.2

(0.04)

0.12

(0.08)

0.09 [0.02,

0.17]

2 45 0.06 [0.02,

0.13]

3 50

Edward Jones (61-64) 965 0.12

(0.02)

0.11

(0.02)

0.1

(0.1)

0.09 [0.02,

0.18]

2 46 0.06 [0.02,

0.12]

3 55

Ross Stores (53) 650 0.22

(0.03)

0.2

(0.03)

0.09

(0.1)

0.09 [0.01,

0.18]

2 47 0.07 [0.03,

0.14]

3 37

Dollar Tree (53) 998 0.28

(0.03)

0.25

(0.03)

0.11

(0.07)

0.09 [0.02,

0.16]

2 48 0.07 [0.02,

0.12]

3 47

Victoria’s Secret (56) 931 0.38

(0.04)

0.34

(0.04)

0.12

(0.06)

0.09 [0.02,

0.15]

2 49 0.13 [0.05,

0.22]

2 20

Walmart (53) 400 0.64

(0.05)

0.57

(0.05)

0.12

(0.07)

0.09 [0.02,

0.15]

2 50 0.06 [0.02,

0.12]

3 51

Bed Bath & Beyond

(57)

998 0.36

(0.04)

0.32

(0.04)

0.12

(0.05)

0.09 [0.03,

0.14]

2 51 0.08 [0.02,

0.17]

3 42

Cintas (72-73) 747 0.23

(0.04)

0.21

(0.03)

0.09

(0.09)

0.09 [0.02,

0.16]

2 52 0.06 [0.02,

0.13]

3 57

United Rentals (72-73) 917 0.12

(0.02)

0.12

(0.02)

0.03

(0.11)

0.08 [0.01,

0.17]

2 53 0.07 [0.02,

0.14]

3 46

Nordstrom (53) 941 0.21

(0.03)

0.19

(0.03)

0.09

(0.07)

0.08 [0.02,

0.15]

2 54 0.06 [0.02,

0.12]

3 52

J.C. Penney (53) 994 0.31

(0.04)

0.28

(0.04)

0.1

(0.05)

0.08 [0.02,

0.14]

2 55 0.06 [0.02,

0.11]

3 63

Tyson Foods (20) 797 0.36

(0.04)

0.33

(0.04)

0.09

(0.07)

0.08 [0.02,

0.14]

2 56 0.05 [0.01,

0.1]

3 78

US Foods (50-51) 961 0.29

(0.03)

0.27

(0.03)

0.1

(0.05)

0.08 [0.02,

0.13]

2 57 0.05 [0.02,

0.1]

3 71

Quest Diagnostics

(80-87)

907 0.02

(0.01)

0.03

(0.01)

-0.27

(0.2)

0.08 [0.01,

0.19]

2 58 0.08 [0.02,

0.15]

3 36

Foot Locker (56) 995 0.15

(0.03)

0.14

(0.03)

0.04

(0.09)

0.07 [0.01,

0.15]

2 59 0.13 [0.04,

0.23]

2 19

Continued on next page
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UnitedHealth (80-87) 942 0.1

(0.03)

0.1

(0.03)

0.05

(0.08)

0.07 [0.01,

0.15]

2 60 0.05 [0.02,

0.1]

3 72

Honeywell (50-51) 556 0.16

(0.04)

0.15

(0.04)

0.06

(0.08)

0.07 [0.01,

0.14]

2 61 0.06 [0.02,

0.11]

3 62

Safeway (54) 429 0.25

(0.05)

0.25

(0.05)

0

(0.11)

0.07 [0.01,

0.16]

2 62 0.06 [0.02,

0.11]

3 61

International Paper

(24-35)

954 0.22

(0.03)

0.2

(0.03)

0.06

(0.07)

0.07 [0.01,

0.14]

2 63 0.06 [0.02,

0.12]

3 66

Olive Garden (58) 1000 0.4

(0.04)

0.37

(0.04)

0.09

(0.04)

0.07 [0.02,

0.12]

2 64 0.06 [0.02,

0.13]

3 64

US Bank (61-64) 966 0.18

(0.03)

0.17

(0.03)

0.05

(0.08)

0.07 [0.01,

0.15]

2 65 0.05 [0.02,

0.1]

3 68

Dollar General (53) 787 0.48

(0.04)

0.45

(0.04)

0.08

(0.05)

0.07 [0.02,

0.12]

2 66 0.05 [0.02,

0.1]

3 70

XPO Logistics (42-47) 861 0.16

(0.03)

0.16

(0.03)

0.02

(0.09)

0.07 [0.01,

0.15]

2 67 0.05 [0.01,

0.1]

3 75

Performance Food

Group (50-51)

520 0.35

(0.05)

0.33

(0.05)

0.06

(0.07)

0.07 [0.01,

0.13]

2 68 0.05 [0.02,

0.1]

3 65

Sherwin-Williams (52) 980 0.48

(0.04)

0.44

(0.04)

0.08

(0.03)

0.07 [0.02,

0.11]

2 69 0.04 [0.02,

0.09]

3 84

Home Depot (52) 987 0.06

(0.02)

0.06

(0.02)

-0.01

(0.1)

0.07 [0.01,

0.15]

2 70 0.06 [0.02,

0.12]

3 59

Macy’s (53) 851 0.19

(0.03)

0.19

(0.03)

0.02

(0.09)

0.07 [0.01,

0.14]

2 71 0.06 [0.02,

0.12]

3 49

TJX (53) 767 0.53

(0.04)

0.49

(0.04)

0.07

(0.04)

0.06 [0.02,

0.11]

2 72 0.05 [0.02,

0.09]

3 77

Starbucks (58) 1000 0.3

(0.03)

0.28

(0.03)

0.05

(0.07)

0.06 [0.01,

0.13]

2 73 0.06 [0.02,

0.15]

3 56

Sears (incl. repair /

auto) (75-76)

968 0.3

(0.04)

0.29

(0.04)

0.06

(0.06)

0.06 [0.01,

0.12]

2 74 0.05 [0.01,

0.09]

3 82

KFC (58) 1000 0.35

(0.04)

0.33

(0.04)

0.06

(0.05)

0.06 [0.01,

0.11]

2 75 0.06 [0.02,

0.12]

3 69

Lab Corp (80-87) 826 0.14

(0.02)

0.14

(0.03)

-0.01

(0.09)

0.06 [0.01,

0.13]

2 76 0.05 [0.02,

0.1]

3 73

Kindred Healthcare

(80-87)

567 0.11

(0.03)

0.14

(0.03)

-0.18

(0.14)

0.06 [0, 0.15] 2 77 0.06 [0.02,

0.12]

3 54

J.B. Hunt (42-47) 877 0.25

(0.04)

0.25

(0.04)

-0.01

(0.08)

0.06 [0.01,

0.13]

2 78 0.05 [0.01,

0.09]

3 81

Geico (61-64) 432 0.43

(0.06)

0.44

(0.06)

-0.02

(0.09)

0.06 [0.01,

0.13]

2 79 0.05 [0.01,

0.1]

3 74

WestRock (24-35) 606 0.21

(0.04)

0.21

(0.04)

-0.02

(0.09)

0.06 [0.01,

0.13]

2 80 0.05 [0.02,

0.11]

3 67

Publix (54) 947 0.76

(0.03)

0.72

(0.03)

0.06

(0.04)

0.05 [0.01,

0.1]

2 81 0.04 [0.01,

0.07]

4 89

Ulta Beauty (72-73) 999 0.24

(0.03)

0.23

(0.03)

0.01

(0.07)

0.05 [0.01,

0.11]

2 82 0.05 [0.01,

0.1]

3 79

AECOM (80-87) 374 0.12

(0.05)

0.12

(0.05)

0.04

(0.04)

0.05 [0.01,

0.1]

2 83 0.04 [0.01,

0.07]

4 88

McLane Company

(50-51)

704 0.4

(0.04)

0.4

(0.04)

-0.01

(0.06)

0.05 [0, 0.1] 3 84 0.05 [0.01,

0.09]

3 80

Target (53) 974 0.2

(0.03)

0.2

(0.03)

-0.01

(0.06)

0.05 [0, 0.1] 3 85 0.05 [0.02,

0.09]

3 76

FedEx (42-47) 648 0.19

(0.04)

0.2

(0.04)

-0.03

(0.07)

0.04 [0, 0.1] 3 86 0.04 [0.01,

0.08]

3 86

Lowe’s (52) 788 0.36

(0.04)

0.36

(0.04)

0

(0.05)

0.04 [0, 0.09] 3 87 0.04 [0.01,

0.08]

3 85

Ryder System (42-47) 914 0.18

(0.03)

0.19

(0.03)

-0.03

(0.06)

0.04 [0, 0.1] 3 88 0.04 [0.01,

0.07]

4 87

Kohl’s (53) 944 0.53

(0.04)

0.52

(0.04)

0.02

(0.03)

0.03 [0, 0.07] 3 89 0.04 [0.01,

0.06]

4 90

Mondelez (20) 788 0.44

(0.04)

0.44

(0.04)

-0.01

(0.04)

0.03 [0, 0.08] 3 90 0.03 [0.01,

0.06]

4 93

Continued on next page
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Hilton (65-70) 886 0.24

(0.04)

0.26

(0.04)

-0.11

(0.07)

0.03 [0, 0.09] 3 91 0.04 [0.01,

0.09]

3 83

Sysco (50-51) 941 0.18

(0.03)

0.18

(0.03)

0

(0.04)

0.03 [0, 0.07] 3 92 0.04 [0.01,

0.07]

4 91

Waste Management

(49)

930 0.45

(0.04)

0.46

(0.04)

-0.03

(0.04)

0.03 [0, 0.07] 3 93 0.04 [0.01,

0.07]

4 92

Kroger (54) 940 0.46

(0.04)

0.46

(0.04)

0

(0.03)

0.02 [0, 0.05] 3 94 0.02 [0.01,

0.05]

4 96

Avis-Budget (75-76) 797 0.31

(0.04)

0.32

(0.04)

-0.05

(0.04)

0.02 [0, 0.06] 3 95 0.03 [0.01,

0.06]

4 94

Dr Pepper (20) 537 0.88

(0.04)

0.94

(0.02)

-0.07

(0.04)

0.02 [0, 0.05] 3 96 0.03 [0.01,

0.05]

4 95

Charter / Spectrum

(48)

960 0.45

(0.04)

0.46

(0.04)

-0.03

(0.03)

0.02 [0, 0.04] 3 97 0.02 [0.01,

0.05]

4 97

Notes: This table reports estimated contact penalties and the results of empirical Bayes and

grading exercises for race. Each firm’s industry (2-digit SIC code group) is shown in parentheses.

The next column reports the total number of applications sent to this firm. The columns

p̂w and p̂b give estimates of the probability that a white and Black application (respectively)

is contacted at the average job sampled from the firm in question. The column θ̂i reports

contact penalties (with positive values indicating discrimination against Black applicants). Job-

clustered standard errors are reported in parentheses. The remaining columns report posterior

means (Post. mean), 95% credible intervals (Post. CI), assigned grades using λ = 0.25 (Grd),

and Condorcet ranks (Cond. rank), which are grades under λ = 1, in the baseline model and

the model with industry effects.
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Table F6: Gender discrimination: Detailed results by firm

Baseline model Industry effect model

Firm # Post. Post. Cond. Post. Post. Cond.

(SIC group) apps p̂m p̂f θ̂i Mean CI Grd rank Mean CI Grd rank

Builders FirstSource

(24-35)

581 0.11

(0.03)

0.02

(0.01)

1.57

(0.55)

0.90 [0.15,

1.63]

1 1 0.67 [-0.09,

1.44]

1 1

LKQ Auto (50-51) 587 0.29

(0.05)

0.15

(0.04)

0.66

(0.21)

0.30 [0.04,

0.55]

2 2 0.26 [-0.01,

0.54]

2 2

JPMorgan Chase

(61-64)

981 0.08

(0.02)

0.05

(0.02)

0.45

(0.26)

0.19 [-0.11,

0.51]

2 3 0.13 [-0.16,

0.48]

3 4

Honeywell (50-51) 556 0.19

(0.05)

0.12

(0.03)

0.42

(0.19)

0.17 [-0.05,

0.4]

2 4 0.15 [-0.06,

0.41]

2 3

CVS Health (59) 787 0.05

(0.02)

0.04

(0.01)

0.38

(0.28)

0.15 [-0.16,

0.5]

3 5 0.11 [-0.19,

0.49]

3 6

Goodyear (55) 387 0.08

(0.04)

0.06

(0.03)

0.3

(0.27)

0.11 [-0.17,

0.44]

3 6 0.11 [-0.15,

0.46]

3 5

AutoNation (55) 869 0.13

(0.03)

0.1

(0.02)

0.28

(0.24)

0.10 [-0.15,

0.38]

3 7 0.10 [-0.13,

0.41]

3 7

UGI (49) 546 0.11

(0.03)

0.08

(0.03)

0.27

(0.25)

0.10 [-0.16,

0.39]

3 8 0.07 [-0.17,

0.4]

3 12

Target (53) 974 0.23

(0.04)

0.18

(0.03)

0.26

(0.14)

0.09 [-0.05,

0.25]

3 9 0.08 [-0.06,

0.26]

3 9

WestRock (24-35) 606 0.24

(0.05)

0.19

(0.04)

0.24

(0.18)

0.08 [-0.1,

0.3]

3 10 0.08 [-0.1,

0.32]

3 8

Costco (53) 1000 0.07

(0.02)

0.05

(0.01)

0.24

(0.29)

0.08 [-0.21,

0.43]

3 11 0.07 [-0.2,

0.44]

3 15

O’Reilly Automotive

(55)

973 0.33

(0.03)

0.26

(0.03)

0.22

(0.12)

0.07 [-0.05,

0.2]

3 12 0.07 [-0.05,

0.22]

3 10

Avis-Budget (75-76) 797 0.34

(0.04)

0.29

(0.04)

0.19

(0.09)

0.06 [-0.04,

0.16]

3 13 0.06 [-0.03,

0.18]

3 11

KFC (58) 1000 0.37

(0.04)

0.31

(0.04)

0.17

(0.1)

0.05 [-0.04,

0.15]

3 14 0.05 [-0.04,

0.17]

3 17

Sherwin-Williams

(52)

980 0.5

(0.04)

0.42

(0.04)

0.16

(0.08)

0.04 [-0.03,

0.12]

3 15 0.05 [-0.03,

0.14]

3 19

Disney (incl. stores)

(59)

858 0.1

(0.03)

0.08

(0.02)

0.17

(0.24)

0.05 [-0.19,

0.33]

3 16 0.04 [-0.18,

0.34]

3 23

XPO Logistics

(42-47)

861 0.17

(0.03)

0.14

(0.03)

0.16

(0.16)

0.05 [-0.11,

0.23]

3 17 0.04 [-0.11,

0.25]

3 21

McLane Company

(50-51)

704 0.43

(0.05)

0.37

(0.05)

0.15

(0.11)

0.04 [-0.06,

0.16]

3 18 0.05 [-0.05,

0.19]

3 14

Sears (incl. repair /

auto) (75-76)

968 0.32

(0.04)

0.27

(0.04)

0.15

(0.11)

0.04 [-0.06,

0.16]

3 19 0.05 [-0.05,

0.19]

3 18

Hertz (75-76) 786 0.25

(0.04)

0.21

(0.04)

0.15

(0.16)

0.04 [-0.1,

0.21]

3 20 0.06 [-0.08,

0.25]

3 13

Quest Diagnostics

(80-87)

907 0.03

(0.02)

0.03

(0.01)

0.17

(0.46)

0.05 [-0.43,

0.6]

3 21 0.00 [-0.43,

0.59]

3 69

Tractor Supply

(50-51)

943 0.19

(0.03)

0.17

(0.03)

0.13

(0.16)

0.04 [-0.12,

0.22]

3 22 0.06 [-0.09,

0.25]

3 16

Starbucks (58) 1000 0.31

(0.04)

0.28

(0.03)

0.1

(0.09)

0.02 [-0.06,

0.12]

3 23 0.03 [-0.05,

0.14]

3 22

Walmart (53) 400 0.63

(0.05)

0.57

(0.05)

0.1

(0.08)

0.02 [-0.05,

0.1]

3 24 0.03 [-0.04,

0.12]

3 25

UnitedHealth (80-87) 942 0.11

(0.03)

0.09

(0.03)

0.11

(0.2)

0.03 [-0.16,

0.25]

3 25 0.01 [-0.17,

0.26]

3 48

Nordstrom (53) 941 0.21

(0.04)

0.19

(0.03)

0.1

(0.13)

0.02 [-0.09,

0.16]

3 26 0.03 [-0.08,

0.18]

3 28

Cintas (72-73) 747 0.23

(0.04)

0.21

(0.04)

0.1

(0.15)

0.02 [-0.11,

0.19]

3 27 0.01 [-0.13,

0.2]

3 41

US Foods (50-51) 961 0.29

(0.04)

0.27

(0.03)

0.09

(0.1)

0.02 [-0.07,

0.13]

3 28 0.04 [-0.05,

0.16]

3 20

Continued on next page
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Kohl’s (53) 944 0.54

(0.04)

0.5

(0.04)

0.09

(0.06)

0.02 [-0.04,

0.08]

3 29 0.02 [-0.03,

0.1]

3 26

DISH (48) 771 0.28

(0.04)

0.26

(0.04)

0.09

(0.16)

0.02 [-0.12,

0.19]

3 30 0.01 [-0.13,

0.2]

3 43

Safeway (54) 429 0.26

(0.06)

0.24

(0.05)

0.09

(0.19)

0.02 [-0.15,

0.23]

3 31 0.03 [-0.14,

0.25]

3 29

Olive Garden (58) 1000 0.4

(0.04)

0.38

(0.04)

0.06

(0.08)

0.01 [-0.05,

0.08]

3 32 0.02 [-0.05,

0.11]

3 31

Best Buy (57) 920 0.18

(0.03)

0.17

(0.03)

0.07

(0.15)

0.01 [-0.12,

0.17]

3 33 0.02 [-0.11,

0.2]

3 33

Publix (54) 947 0.76

(0.03)

0.72

(0.03)

0.05

(0.04)

0.01 [-0.02,

0.04]

3 34 0.01 [-0.02,

0.06]

3 34

Murphy USA (55) 927 0.28

(0.04)

0.27

(0.03)

0.06

(0.12)

0.01 [-0.09,

0.13]

3 35 0.03 [-0.07,

0.16]

3 27

AT&T (48) 893 0.12

(0.02)

0.12

(0.02)

0.07

(0.18)

0.01 [-0.15,

0.2]

3 36 0.00 [-0.15,

0.21]

3 54

United Rentals

(72-73)

917 0.13

(0.02)

0.12

(0.03)

0.07

(0.19)

0.01 [-0.16,

0.22]

3 37 0.00 [-0.17,

0.23]

3 62

Genuine Parts (Napa

Auto) (55)

966 0.29

(0.04)

0.28

(0.03)

0.05

(0.11)

0.01 [-0.09,

0.12]

3 38 0.02 [-0.07,

0.15]

3 30

AutoZone (55) 1000 0.36

(0.04)

0.35

(0.04)

0.04

(0.09)

0.00 [-0.07,

0.09]

3 39 0.02 [-0.05,

0.11]

3 32

Dick’s (59) 975 0.36

(0.04)

0.35

(0.04)

0.02

(0.09)

0.00 [-0.07,

0.08]

3 40 0.00 [-0.06,

0.1]

3 42

Bed Bath & Beyond

(57)

998 0.34

(0.04)

0.34

(0.04)

0.02

(0.09)

0.00 [-0.07,

0.08]

3 41 0.01 [-0.06,

0.1]

3 38

Dillard’s (53) 925 0.32

(0.04)

0.32

(0.04)

0.01

(0.11)

0.00 [-0.09,

0.1]

3 42 0.01 [-0.08,

0.13]

3 39

J.B. Hunt (42-47) 877 0.25

(0.04)

0.25

(0.04)

0.01

(0.13)

0.00 [-0.12,

0.13]

3 43 0.01 [-0.11,

0.15]

3 44

Advance Auto Parts

(55)

967 0.25

(0.03)

0.25

(0.03)

0.01

(0.13)

-0.01 [-0.11,

0.12]

3 44 0.02 [-0.09,

0.15]

3 35

Dr Pepper (20) 537 0.9

(0.03)

0.92

(0.03)

-0.02

(0.04)

-0.01 [-0.04,

0.02]

3 45 0.00 [-0.03,

0.04]

3 52

US Bank (61-64) 966 0.17

(0.03)

0.17

(0.03)

0.01

(0.14)

-0.01 [-0.13,

0.13]

3 46 0.00 [-0.12,

0.15]

3 59

Waste Management

(49)

930 0.45

(0.04)

0.46

(0.04)

-0.01

(0.07)

-0.01 [-0.06,

0.05]

3 47 0.00 [-0.06,

0.07]

3 49

Geico (61-64) 432 0.44

(0.06)

0.44

(0.06)

0.01

(0.13)

-0.01 [-0.11,

0.12]

3 48 0.00 [-0.11,

0.13]

3 56

Ryder System

(42-47)

914 0.18

(0.03)

0.18

(0.03)

0.01

(0.16)

-0.01 [-0.15,

0.16]

3 49 0.01 [-0.13,

0.19]

3 46

Tyson Foods (20) 797 0.34

(0.04)

0.34

(0.04)

-0.01

(0.11)

-0.01 [-0.1,

0.09]

3 50 0.00 [-0.09,

0.11]

3 58

Jones Lang LaSalle

(65-70)

577 0.06

(0.02)

0.06

(0.03)

0.03

(0.27)

0.00 [-0.27,

0.29]

3 51 -0.03 [-0.29,

0.3]

3 77

Dollar General (53) 787 0.46

(0.05)

0.47

(0.05)

-0.03

(0.07)

-0.01 [-0.07,

0.05]

3 52 0.00 [-0.06,

0.07]

3 50

Macy’s (53) 851 0.19

(0.03)

0.19

(0.03)

-0.01

(0.14)

-0.01 [-0.13,

0.12]

3 52 0.00 [-0.11,

0.15]

3 47

Lowe’s (52) 788 0.35

(0.04)

0.36

(0.04)

-0.03

(0.1)

-0.02 [-0.1,

0.08]

3 53 0.00 [-0.08,

0.11]

3 45

Mondelez (20) 788 0.43

(0.04)

0.45

(0.05)

-0.04

(0.08)

-0.02 [-0.08,

0.05]

3 54 -0.01 [-0.07,

0.07]

3 61

Bath & Body Works

(59)

990 0.29

(0.04)

0.3

(0.03)

-0.05

(0.11)

-0.02 [-0.1,

0.07]

3 55 -0.01 [-0.09,

0.1]

3 62

Cardinal Health

(50-51)

974 0.21

(0.03)

0.22

(0.03)

-0.04

(0.12)

-0.02 [-0.12,

0.09]

3 56 0.01 [-0.08,

0.13]

3 36

Dollar Tree (53) 998 0.26

(0.03)

0.27

(0.04)

-0.05

(0.11)

-0.02 [-0.11,

0.08]

3 57 0.00 [-0.09,

0.1]

3 55

AECOM (80-87) 374 0.12

(0.05)

0.12

(0.05)

0

(0.26)

-0.02 [-0.27,

0.27]

3 58 -0.02 [-0.25,

0.28]

3 74

Continued on next page
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Kroger (54) 940 0.44

(0.04)

0.48

(0.04)

-0.09

(0.07)

-0.03 [-0.08,

0.03]

3 59 -0.01 [-0.07,

0.05]

3 63

Pilot Flying J (55) 993 0.31

(0.03)

0.34

(0.03)

-0.09

(0.09)

-0.03 [-0.1,

0.04]

3 60 0.00 [-0.07,

0.07]

3 53

Stanley Black &

Decker (24-35)

790 0.04

(0.02)

0.04

(0.02)

0

(0.33)

-0.02 [-0.34,

0.35]

3 61 0.04 [-0.26,

0.41]

3 24

Pizza Hut (58) 1000 0.37

(0.04)

0.41

(0.04)

-0.1

(0.08)

-0.03 [-0.09,

0.03]

3 62 -0.01 [-0.07,

0.07]

3 57

Home Depot (52) 987 0.06

(0.02)

0.06

(0.02)

-0.02

(0.32)

-0.03 [-0.34,

0.32]

3 63 0.02 [-0.26,

0.38]

3 37

Sysco (50-51) 941 0.17

(0.03)

0.19

(0.04)

-0.11

(0.13)

-0.04 [-0.15,

0.08]

3 64 0.01 [-0.1,

0.13]

3 40

Charter / Spectrum

(48)

960 0.42

(0.04)

0.49

(0.05)

-0.15

(0.08)

-0.04 [-0.11,

0.02]

3 65 -0.03 [-0.09,

0.04]

3 73

TJX (53) 767 0.48

(0.04)

0.55

(0.04)

-0.15

(0.08)

-0.04 [-0.11,

0.02]

3 66 -0.02 [-0.09,

0.05]

3 66

Walgreens (59) 910 0.35

(0.04)

0.41

(0.04)

-0.15

(0.09)

-0.04 [-0.11,

0.02]

3 67 -0.02 [-0.09,

0.05]

3 70

International Paper

(24-35)

954 0.2

(0.03)

0.22

(0.04)

-0.13

(0.12)

-0.05 [-0.14,

0.06]

3 68 -0.01 [-0.11,

0.1]

3 60

Rite Aid (59) 962 0.18

(0.03)

0.21

(0.03)

-0.14

(0.12)

-0.05 [-0.14,

0.06]

3 69 -0.02 [-0.12,

0.09]

3 71

J.C. Penney (53) 994 0.27

(0.04)

0.32

(0.04)

-0.15

(0.11)

-0.05 [-0.13,

0.04]

3 70 -0.02 [-0.11,

0.07]

3 68

Ross Stores (53) 650 0.2

(0.03)

0.22

(0.03)

-0.13

(0.15)

-0.05 [-0.17,

0.08]

3 71 -0.02 [-0.13,

0.12]

3 67

Ulta Beauty (72-73) 999 0.22

(0.03)

0.25

(0.04)

-0.16

(0.12)

-0.05 [-0.15,

0.05]

3 72 -0.04 [-0.14,

0.07]

3 78

Universal Health

(80-87)

586 0.27

(0.05)

0.32

(0.05)

-0.15

(0.15)

-0.05 [-0.17,

0.08]

3 73 -0.04 [-0.15,

0.1]

3 79

Performance Food

Group (50-51)

520 0.32

(0.05)

0.37

(0.05)

-0.15

(0.14)

-0.05 [-0.17,

0.07]

3 74 0.00 [-0.11,

0.12]

3 51

Marriott (65-70) 964 0.14

(0.03)

0.16

(0.03)

-0.13

(0.17)

-0.05 [-0.19,

0.11]

3 75 -0.05 [-0.2,

0.12]

3 83

GameStop (57) 790 0.05

(0.02)

0.06

(0.02)

-0.09

(0.25)

-0.05 [-0.28,

0.21]

3 76 -0.01 [-0.23,

0.26]

3 65

FedEx (42-47) 648 0.18

(0.04)

0.21

(0.04)

-0.16

(0.14)

-0.05 [-0.17,

0.07]

3 77 -0.02 [-0.13,

0.1]

3 72

PepsiCo (20) 916 0.05

(0.02)

0.05

(0.02)

-0.1

(0.24)

-0.05 [-0.27,

0.19]

3 78 -0.03 [-0.23,

0.23]

3 76

Hilton (65-70) 886 0.23

(0.04)

0.27

(0.04)

-0.18

(0.13)

-0.06 [-0.17,

0.06]

3 79 -0.05 [-0.17,

0.08]

3 81

Gap (56) 996 0.27

(0.04)

0.33

(0.04)

-0.2

(0.12)

-0.06 [-0.16,

0.03]

3 80 -0.25 [-0.34,

-0.11]

4 93

CarMax (55) 775 0.13

(0.02)

0.15

(0.03)

-0.16

(0.17)

-0.06 [-0.21,

0.1]

3 81 -0.01 [-0.15,

0.15]

3 64

Republic Services

(49)

943 0.19

(0.03)

0.23

(0.04)

-0.21

(0.14)

-0.07 [-0.18,

0.05]

3 82 -0.03 [-0.15,

0.09]

3 75

Foot Locker (56) 995 0.13

(0.03)

0.16

(0.03)

-0.18

(0.17)

-0.07 [-0.21,

0.09]

3 83 -0.34 [-0.5,

-0.12]

5 94

Dean Foods (20) 295 0.12

(0.05)

0.13

(0.05)

-0.12

(0.29)

-0.06 [-0.33,

0.24]

3 84 -0.04 [-0.29,

0.27]

3 80

Victoria’s Secret (56) 931 0.32

(0.04)

0.4

(0.04)

-0.23

(0.1)

-0.07 [-0.2,

0.01]

3 85 -0.22 [-0.29,

-0.12]

4 92

Edward Jones

(61-64)

965 0.1

(0.02)

0.13

(0.02)

-0.21

(0.17)

-0.08 [-0.22,

0.08]

3 86 -0.04 [-0.19,

0.12]

3 82

Lab Corp (80-87) 826 0.12

(0.02)

0.16

(0.03)

-0.29

(0.16)

-0.10 [-0.24,

0.04]

3 87 -0.06 [-0.2,

0.08]

3 84

Estee Lauder (72-73) 579 0.11

(0.03)

0.15

(0.03)

-0.31

(0.21)

-0.11 [-0.29,

0.07]

3 88 -0.08 [-0.25,

0.11]

3 85

Comcast (48) 231 0.31

(0.07)

0.45

(0.08)

-0.37

(0.22)

-0.13 [-0.33,

0.07]

3 89 -0.08 [-0.28,

0.11]

3 86

Continued on next page
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Kindred Healthcare

(80-87)

567 0.1

(0.03)

0.15

(0.04)

-0.36

(0.25)

-0.14 [-0.36,

0.1]

3 90 -0.09 [-0.3,

0.14]

3 87

VFC (North Face /

Vans) (56)

791 0.12

(0.03)

0.19

(0.04)

-0.42

(0.18)

-0.15 [-0.35,

0.02]

4 91 -0.42 [-0.55,

-0.22]

5 95

Aramark (72-73) 935 0.05

(0.01)

0.07

(0.02)

-0.38

(0.25)

-0.14 [-0.36,

0.09]

3 92 -0.09 [-0.31,

0.13]

3 88

CBRE (65-70) 597 0.02

(0.01)

0.05

(0.02)

-0.72

(0.38)

-0.29 [-0.66,

0.08]

4 93 -0.19 [-0.61,

0.16]

4 91

State Farm (61-64) 481 0.05

(0.03)

0.08

(0.04)

-0.53

(0.66)

-0.28 [-0.96,

0.45]

3 94 -0.15 [-0.75,

0.54]

3 89

Nationwide (61-64) 455 0.05

(0.02)

0.1

(0.04)

-0.73

(0.48)

-0.32 [-0.8,

0.17]

4 95 -0.17 [-0.61,

0.29]

3 90

Ascena (Ann Taylor

/ Loft) (56)

590 0.21

(0.04)

0.42

(0.05)

-0.66

(0.17)

-0.44 [-0.68,

-0.09]

4 96 -0.44 [-0.57,

-0.3]

5 96

Notes: This table reports estimated contact differences and the results of empirical Bayes and

grading exercises for gender. Each firm’s industry (2-digit SIC code group) is shown in paren-

theses. The next column reports the total number of applications sent to this firm. The columns

p̂w and p̂b give estimates of the probability that a male and female application (respectively) is

contacted at the average job sampled from the firm in question. The column θ̂i reports contact

differences (with positive values indicating favoring male applicants). Job-clustered standard er-

rors are reported in parentheses. The remaining columns report posterior means (Post. mean),

95% credible intervals (Post. CI), assigned grades using λ = 0.25 (Grd), and Condorcet ranks

(Cond. rank), which are grades under λ = 1, in the baseline model and the model with industry

effects.
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Figure F1: Contact rates, standard errors, and name grades
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Notes: This figure plots the estimated contact rates for each name against its standard error.
The shape and color of each point indicate the grade assigned to the name using the same
specification as Figure 3.
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Figure F2: Predictive power of grades name for race and sex labels
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Notes: This figure plots the psuedo-R2 (Panel (a)) and AUC (Panel (b)) for a series of logistic
regressions using an indicator for the race or sex of the name as the outcome and dummies for
assigned grades as the explanatory variables for an intermediate range of λ. The number shown
indicates the number of grades assigned.

24



Figure F3: Unadjusted and studentized racial contact gaps against standard errors

a) θ̂i vs. si
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Notes: Panel (a) of this figure plots estimated race contact gaps against their standard errors.
The green line plots the conditional mean of θi given si implied by the GMM estimates. Posterior
mean estimates θ̄i from the baseline model are superimposed on this panel to illustrate EB
shrinkage of contact gaps towards the conditional mean. Panel (b) plots studentized contact
gaps T̂i against standard errors. The green line plots the relationship implied by the model.
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Figure F4: Unadjusted and studentized gender contact gaps against standard errors

a) θ̂i vs. si
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Notes: Panel (a) of this figure plots estimated gender contact gaps against their standard
errors. The green line plots the conditional mean of θi given si implied by the GMM estimates.
Posterior mean estimates θ̄i from the baseline model are superimposed on this panel to illustrate
EB shrinkage of contact gaps towards the conditional mean. Panel (b) plots studentized contact
gaps T̂i against standard errors. The green line plots the relationship implied by the model.
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Figure F5: Race: Contact penalties, standard errors, and report card grades
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Notes: This figure plots the estimated contact penalty for a Black name at each firm against
the standard error of the contact penalty estimate. The shape and color of each point indicate
the grade assigned to the firm using the same specification as Figure 7.
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Figure F6: Gender: Contact penalties, standard errors, and report card grades
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Notes: This figure plots the estimated gender contact difference for each firm against the stan-
dard error of the contact difference estimate. The shape and color of each point indicate the
grade assigned to the firm using the same specification as Figure 14.
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Figure F7: Race: All firm grades (baseline)
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Notes: This figure shows race grade assignments for each value of λ <= 0.5 from a baseline
model without industry effects. To increase readability, only the smallest λ that yields each
unique set of grades is retained. The horizontal axis reports this λ and the corresponding value
of 1/(1 + λ), which is the implied posterior threshold for pairwise ranking decisions. Firms are
ordered by their rank under λ = 1, when each firm is assigned its own grade.
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Figure F8: Race: All firm grades (industry effects)
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1 2 2 2 2 2 2 2 2 3 3 3 3 3 3 3 3 3 3 3 4 4 4 5 5 5 5 5
1 2 2 2 2 2 2 2 2 3 3 3 3 3 3 3 3 3 3 3 4 4 4 5 5 5 5 5
1 2 2 2 2 2 2 2 2 3 3 3 3 3 3 3 4 4 3 3 4 4 4 5 5 5 5 5
1 2 2 2 2 2 2 2 2 3 3 3 3 3 3 3 4 4 3 3 4 4 4 5 5 5 5 5
1 2 2 2 2 2 2 2 2 3 3 3 3 3 3 3 4 4 4 3 4 4 4 5 5 5 5 5
1 2 2 2 2 2 2 2 2 3 3 3 3 3 3 3 4 4 4 3 4 4 4 5 5 5 5 5
1 2 2 2 2 2 2 2 2 3 3 3 3 3 3 3 4 4 4 4 5 5 5 6 6 6 5 5
1 2 2 2 2 2 2 2 2 3 3 3 3 3 3 3 4 4 4 4 5 5 5 6 6 6 5 5
1 2 2 2 2 2 2 2 2 3 3 3 3 3 3 3 4 4 4 4 5 5 5 6 6 6 6 5
1 2 2 2 2 2 2 2 2 3 3 3 3 3 3 3 4 4 4 4 5 5 5 6 6 6 6 5
1 2 2 2 2 2 2 2 2 3 3 3 3 3 3 3 4 4 4 4 5 5 5 6 6 6 6 5
1 2 2 2 2 2 2 2 2 3 3 3 3 3 3 3 4 4 4 4 5 5 5 6 6 6 6 6
1 2 2 2 2 2 2 2 2 3 3 3 3 3 3 3 4 4 4 4 5 5 5 6 6 6 6 6
1 2 2 2 2 2 2 2 2 3 3 3 3 3 3 3 4 4 4 4 5 5 5 6 6 6 6 6
1 2 2 2 2 2 2 2 2 3 3 3 3 3 3 3 4 4 4 4 5 5 5 6 6 6 6 6
1 2 2 2 2 2 2 2 2 3 3 3 3 3 3 3 4 4 4 4 5 5 5 6 6 6 6 6
1 2 2 2 2 2 2 2 2 3 3 3 3 3 3 3 4 4 4 4 5 5 5 6 6 6 6 6
1 2 2 2 2 2 2 2 2 3 3 3 3 3 3 3 4 4 4 4 5 5 5 6 6 6 6 6
1 2 2 2 2 2 2 2 2 3 3 3 3 3 3 3 4 4 4 4 5 5 5 6 6 6 6 6
1 2 2 2 2 2 2 2 2 3 3 3 3 3 3 3 4 4 4 4 5 5 5 6 6 6 6 6
1 2 2 2 2 2 2 2 2 3 3 3 3 3 3 3 4 4 4 4 5 5 5 6 6 6 6 6
1 2 2 2 2 2 2 2 2 3 3 3 3 3 3 3 4 4 4 4 5 5 5 6 6 6 6 6
1 2 2 2 2 2 2 2 2 3 3 3 3 3 3 3 4 4 4 4 5 5 5 6 6 6 6 6
1 2 2 2 2 2 2 2 2 3 3 3 3 3 3 3 4 4 4 4 5 5 5 6 6 6 6 6
1 2 2 2 2 2 2 2 2 3 3 3 3 3 3 3 4 4 4 4 5 5 5 6 6 6 6 6
1 2 2 2 2 2 2 2 2 3 3 3 3 3 3 3 4 4 4 4 5 5 5 6 6 6 6 6
1 2 2 2 2 2 2 2 2 3 3 3 3 3 3 3 4 4 4 4 5 5 5 6 6 6 6 6
1 2 2 2 2 2 2 2 2 3 3 3 3 3 3 3 4 4 4 4 5 5 5 6 6 6 6 6
1 2 2 2 2 2 2 2 2 3 3 3 3 3 3 3 4 4 4 4 5 5 5 6 6 6 6 6
1 2 2 2 2 2 2 2 2 3 3 3 3 3 3 3 4 4 4 4 5 5 5 6 6 6 6 6
1 2 2 2 2 2 2 2 2 3 3 3 3 3 3 3 4 4 4 4 5 5 5 6 6 6 6 6
1 2 2 2 2 2 2 2 2 3 3 3 3 3 3 3 4 4 4 4 5 5 5 6 6 6 6 6
1 2 2 2 2 2 2 2 2 3 3 3 3 3 3 3 4 4 4 4 5 5 5 6 6 6 6 6
1 2 2 2 2 2 2 2 2 3 3 3 3 3 3 3 4 4 4 4 5 5 5 6 6 6 6 6
1 2 2 2 2 2 2 2 2 3 3 3 3 3 3 3 4 4 4 4 5 5 5 6 6 6 6 6
1 2 2 2 2 2 2 2 2 3 3 3 3 3 3 3 4 4 4 4 5 5 5 6 6 6 6 6
1 2 2 2 2 2 2 2 2 3 3 3 3 3 3 3 4 4 4 4 5 5 5 6 6 6 6 6
1 2 2 2 2 2 2 2 2 3 3 3 3 3 3 3 4 4 4 4 5 5 5 6 6 6 6 6
1 2 2 2 2 2 2 2 2 3 3 3 3 3 3 3 4 4 4 4 5 5 5 6 6 6 6 6
1 2 2 2 2 2 2 2 2 3 3 3 3 3 3 3 4 4 4 4 5 5 5 6 6 6 6 6
1 2 2 2 2 2 2 2 2 3 3 3 3 3 3 3 4 4 4 4 5 5 5 6 6 6 6 6
1 2 2 2 2 2 2 2 2 3 3 3 3 3 3 3 4 4 4 4 5 5 5 6 6 6 6 6
1 2 2 2 2 2 2 2 2 3 3 3 3 3 3 3 4 4 4 4 5 5 5 6 6 6 6 6
1 2 2 2 2 2 2 2 2 3 3 3 3 3 3 3 4 4 4 4 5 5 5 6 6 6 6 6
1 2 2 2 2 2 2 2 2 3 3 3 3 3 3 3 4 4 4 4 5 5 5 6 6 6 6 6
1 2 2 2 2 2 2 2 2 3 3 3 3 3 3 3 4 4 4 4 5 5 5 6 6 6 6 6
1 2 2 2 2 2 2 2 2 3 3 3 3 3 3 3 4 4 4 4 5 5 5 6 6 6 6 6
1 2 2 2 2 2 2 2 2 3 3 3 3 3 3 3 4 4 4 4 5 5 5 6 6 6 6 6
1 2 2 2 2 2 2 2 2 3 3 3 3 3 3 3 4 4 4 4 5 5 5 6 6 6 6 6
1 2 2 2 2 2 2 2 2 3 3 3 3 3 3 3 4 4 4 4 5 5 5 6 6 6 6 6
1 2 2 2 2 2 2 2 2 3 3 3 3 3 3 3 4 4 4 4 5 5 5 6 6 6 6 6
1 2 2 2 2 2 2 2 2 3 3 3 3 3 3 3 4 4 4 4 5 5 5 6 6 7 7 6
1 2 2 2 2 2 2 2 2 3 3 3 3 3 3 3 4 4 4 4 5 5 6 7 7 7 7 7
1 2 2 2 2 2 2 2 2 3 3 3 3 3 3 3 4 4 4 4 5 6 6 7 7 7 7 7
1 2 2 2 2 2 2 2 2 3 3 3 3 3 3 3 4 5 5 5 6 6 6 7 7 7 7 7
1 2 2 2 2 2 2 2 2 3 3 3 3 3 3 3 4 5 5 5 6 6 6 7 7 7 7 7
1 2 2 2 2 2 2 2 2 3 3 3 3 3 4 4 5 5 5 5 6 6 6 7 7 7 7 7
1 2 2 2 2 2 2 2 2 3 3 3 3 4 4 4 5 5 5 5 6 6 6 7 7 7 7 7
1 2 2 2 2 2 2 2 2 3 3 3 4 4 4 4 5 5 5 5 6 6 6 7 7 7 7 7
1 2 2 2 2 2 2 2 2 3 3 3 4 4 4 4 5 5 5 5 6 6 6 7 7 7 7 7
1 2 2 2 2 2 2 2 2 3 3 3 4 4 4 4 5 5 5 5 6 6 6 7 7 7 7 7
1 2 2 2 2 2 2 2 2 3 3 3 4 4 4 4 5 5 5 5 6 6 6 7 7 7 7 7
1 2 2 2 2 2 2 2 2 3 3 3 4 4 4 4 5 5 5 5 6 6 6 7 7 7 7 7
1 2 2 2 2 2 2 2 2 3 3 4 4 4 4 4 5 5 5 5 6 6 6 7 7 7 7 7
1 2 2 2 2 2 2 2 2 3 4 4 4 4 4 4 5 5 5 5 6 6 6 7 7 7 7 7
1 2 2 2 2 3 2 3 3 4 4 4 4 4 4 4 5 5 5 6 7 7 7 8 8 8 8 8
1 2 2 2 2 3 2 3 3 4 4 4 4 4 4 4 5 5 5 6 7 7 7 8 8 8 8 8
1 2 2 2 2 3 2 3 3 4 4 4 4 4 4 4 5 5 5 6 7 7 7 8 8 8 8 8

Notes: This figure shows race grade assignments for each value of λ ≤ 0.5 from a model with
industry effects. To increase readability, only the smallest λ that yields each unique set of
grades is retained. The horizontal axis reports this λ and the corresponding value of 1/(1 + λ),
which is the implied posterior threshold for pairwise ranking decisions. Firms are ordered by
their rank under λ = 1, when each firm is assigned its own grade.
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Figure F9: Gender: All firm grades (baseline)
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1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
1 2 2 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
1 2 2 2 3 3 3 3 2 2 2 2 3 2 3 3 3 3 3 3 3 3 3 3
1 2 2 2 3 3 2 2 2 2 2 2 3 2 3 3 3 3 3 3 3 3 3 3
1 2 2 2 3 3 3 3 3 3 3 3 4 2 3 3 3 3 3 3 3 3 4 4
1 2 2 2 3 3 3 3 3 3 3 3 4 3 4 4 3 3 3 3 4 3 4 4
1 2 2 2 3 3 3 3 3 3 3 3 4 3 4 4 3 3 3 3 4 3 4 4
1 2 2 2 3 3 3 3 3 3 3 3 4 3 4 4 3 3 3 3 4 3 4 4
1 2 2 2 3 3 3 3 3 3 3 3 3 2 3 3 3 3 3 3 3 3 4 4
1 2 2 2 3 3 3 3 3 3 3 3 4 3 4 4 3 3 3 3 4 3 4 4
1 2 2 2 3 3 3 3 3 3 3 3 4 3 4 4 4 4 4 3 4 4 5 5
1 2 2 2 3 3 3 3 3 3 3 3 4 3 4 3 3 3 3 3 4 3 4 4
1 2 2 2 3 3 3 3 3 3 3 3 4 3 4 4 3 3 3 3 4 3 4 4
1 2 2 2 3 3 3 3 3 3 3 3 4 3 4 4 3 3 3 3 4 4 4 4
1 2 2 2 3 3 3 3 3 3 3 3 4 3 4 4 3 3 3 3 4 4 4 4
1 2 2 2 3 3 3 3 3 3 3 3 4 3 4 4 4 4 4 4 4 4 5 5
1 2 2 2 3 3 3 3 3 3 3 3 4 3 4 4 4 4 4 3 4 4 5 5
1 2 2 2 3 3 3 3 3 3 3 3 4 3 4 4 4 3 3 3 4 4 5 5
1 2 2 2 3 3 3 3 3 3 3 3 4 3 4 4 4 3 3 3 4 4 5 5
1 2 2 2 3 3 3 3 3 3 3 3 4 3 4 4 4 4 4 4 4 4 5 5
1 2 2 2 3 3 3 3 3 3 3 3 4 3 4 4 4 4 4 4 4 4 5 5
1 2 2 2 3 3 3 3 3 3 3 3 4 3 4 4 4 4 4 4 4 4 5 5
1 2 2 2 3 3 3 3 3 3 3 3 4 3 4 4 4 4 4 4 4 4 5 5
1 2 2 2 3 3 3 3 3 3 3 3 4 3 4 4 4 4 4 4 4 4 5 5
1 2 2 2 3 3 3 3 3 3 3 3 4 3 4 4 4 4 4 4 4 4 5 5
1 2 2 2 3 3 3 3 3 3 3 3 4 3 4 4 4 4 4 4 4 4 5 5
1 2 2 2 3 3 3 3 3 3 3 3 4 3 4 4 4 4 4 4 4 4 5 5
1 2 2 2 3 3 3 3 3 3 3 3 4 3 4 4 4 4 4 4 4 4 5 5
1 2 2 2 3 3 3 3 3 3 3 3 4 3 4 4 4 4 4 4 4 4 5 5
1 2 2 2 3 3 3 3 3 3 3 3 4 3 4 4 4 4 4 4 4 4 5 5
1 2 2 2 3 3 3 3 3 3 3 3 4 3 4 4 4 4 4 4 4 4 5 5
1 2 2 2 3 3 3 3 3 3 3 3 4 3 4 4 4 4 4 4 4 4 5 5
1 2 2 2 3 3 3 3 3 3 3 3 4 3 4 4 4 4 4 4 4 4 5 5
1 2 2 2 3 3 3 3 3 3 3 3 4 3 4 4 4 4 4 4 4 4 5 5
1 2 2 2 3 3 3 3 3 3 3 3 4 3 4 4 4 4 4 4 4 4 5 5
1 2 2 2 3 3 3 3 3 3 3 3 4 3 4 4 4 4 4 4 4 4 5 5
1 2 2 2 3 3 3 3 3 3 3 3 4 3 4 4 4 4 4 4 4 4 5 5
1 2 2 2 3 3 3 3 3 3 3 3 4 3 4 4 4 4 4 4 4 4 5 5
1 2 2 2 3 3 3 3 3 3 3 3 4 3 4 4 4 4 4 4 4 4 5 5
1 2 2 2 3 3 3 3 3 3 3 3 4 3 4 4 4 4 4 4 4 4 5 5
1 2 2 2 3 3 3 3 3 3 3 3 4 3 4 4 4 4 4 4 4 4 5 5
1 2 2 2 3 3 3 3 3 3 3 3 4 3 4 4 4 4 4 4 4 4 5 5
1 2 2 2 3 3 3 3 3 3 3 3 4 3 4 4 4 4 4 4 4 4 5 5
1 2 2 2 3 3 3 3 3 3 3 3 4 3 4 4 4 4 4 4 4 4 5 5
1 2 2 2 3 3 3 3 3 3 3 3 4 3 4 4 4 4 4 4 4 4 5 5
1 2 2 2 3 3 3 3 3 3 3 3 4 3 4 4 4 4 4 4 4 4 5 5
1 2 2 2 3 3 3 3 3 3 3 3 4 3 4 4 4 4 4 4 4 4 5 5
1 2 2 2 3 3 3 3 3 3 3 3 4 3 4 4 4 4 4 4 4 4 5 5
1 2 2 2 3 3 3 3 3 3 3 3 4 3 4 4 4 4 4 4 4 4 5 5
1 2 2 2 3 3 3 3 3 3 3 3 4 3 4 4 4 4 4 4 4 4 5 5
1 2 2 2 3 3 3 3 3 3 3 3 4 3 4 4 4 4 4 4 4 4 5 5
1 2 2 2 3 3 3 3 3 3 3 3 4 3 4 4 4 4 4 4 4 4 5 5
1 2 2 2 3 3 3 3 3 3 3 3 4 3 4 4 4 4 4 4 4 4 5 5
1 2 2 2 3 3 3 3 3 3 3 3 4 3 4 4 4 4 4 4 4 4 5 5
1 2 2 2 3 3 3 3 3 3 3 3 4 3 4 4 4 4 4 4 4 4 5 5
1 2 2 2 3 3 3 3 3 3 3 3 4 3 4 4 4 4 4 4 4 4 5 5
1 2 2 2 3 3 3 3 3 3 3 3 4 3 4 4 4 4 4 4 4 4 5 5
1 2 2 2 3 3 3 3 3 3 3 3 4 3 4 4 4 4 4 4 4 4 5 5
1 2 2 2 3 3 3 3 3 3 3 3 4 3 4 4 4 4 4 4 4 4 5 5
1 2 2 2 3 3 3 3 3 3 3 3 4 3 4 4 4 4 4 4 5 5 6 6
1 2 2 2 3 3 3 3 3 3 3 3 4 3 4 4 4 4 4 4 5 5 6 6
1 2 2 2 3 3 3 3 3 3 3 3 4 3 4 4 4 4 4 4 4 4 5 5
1 2 2 2 3 3 3 3 3 3 3 3 4 3 4 4 4 4 4 4 5 5 6 6
1 2 2 2 3 3 3 3 3 3 3 3 4 3 4 4 4 4 4 4 4 4 5 5
1 2 2 2 3 3 3 3 3 3 3 3 4 3 4 4 4 4 4 4 5 5 6 6
1 2 2 2 3 3 3 3 3 3 3 3 4 3 4 4 4 4 4 4 5 5 6 6
1 2 2 2 3 3 3 3 3 3 3 3 4 3 4 4 4 4 4 4 5 5 6 6
1 2 2 2 3 3 3 3 3 3 3 3 4 3 4 4 4 4 4 4 5 5 6 6
1 2 2 2 3 3 3 3 3 3 3 3 4 3 4 4 4 4 4 4 5 5 6 6
1 2 2 2 3 3 3 3 3 3 3 3 4 3 4 4 4 4 4 4 5 5 6 6
1 2 2 2 3 3 3 3 3 3 3 3 4 3 4 4 4 4 4 4 5 5 6 6
1 2 2 2 3 3 3 3 3 3 3 3 4 3 4 4 4 4 4 4 5 5 6 6
1 2 2 2 3 3 3 3 3 3 3 3 4 3 4 4 4 4 4 4 5 5 6 6
1 2 2 2 3 3 3 3 3 3 3 3 4 3 4 4 4 4 4 4 5 5 6 6
1 2 2 2 3 3 3 3 3 3 3 3 4 3 4 4 4 4 4 4 5 5 6 6
1 2 2 2 3 3 3 3 3 3 3 3 4 3 4 4 4 4 4 4 5 5 6 6
1 2 2 2 3 3 3 3 3 3 3 3 4 3 4 4 4 4 4 4 5 5 6 6
1 2 2 2 3 3 3 3 3 3 3 3 4 3 4 4 4 4 4 4 5 5 6 6
1 2 2 2 3 3 3 3 3 3 3 3 4 3 4 4 4 4 4 4 5 5 6 6
1 2 2 2 3 3 3 3 3 3 3 3 4 3 4 4 4 4 4 4 5 5 6 6
1 2 2 2 3 3 3 3 3 3 3 3 4 3 4 4 4 4 4 4 5 5 6 6
1 2 2 2 3 3 3 3 3 3 3 3 4 3 4 4 4 4 4 4 5 5 6 6
1 2 2 2 3 3 3 3 3 3 3 3 4 3 4 4 4 4 4 4 5 5 6 6
1 2 2 2 3 3 3 3 3 3 3 3 4 3 4 4 4 4 4 4 5 5 6 6
1 2 2 2 3 3 3 3 3 3 3 3 4 3 4 4 4 4 4 4 5 5 6 6
1 2 2 2 3 3 3 3 3 3 3 3 4 3 4 4 4 4 5 5 5 5 6 6
1 2 2 2 3 3 3 3 3 3 3 3 4 3 4 4 4 4 4 4 5 5 6 6
1 2 2 2 3 3 3 3 3 3 3 4 5 4 5 5 5 5 5 5 5 5 6 7
1 2 2 2 3 3 3 3 3 3 3 4 5 4 5 5 5 5 5 5 5 6 7 7
1 2 2 2 3 3 3 3 3 4 4 4 5 4 5 5 5 5 5 5 6 6 7 7
1 2 2 2 3 3 3 3 3 3 4 4 5 4 5 5 5 5 5 5 6 6 7 7
1 2 2 2 3 3 3 4 4 4 4 4 5 4 5 5 5 5 5 5 6 6 7 7
1 2 2 2 3 3 3 3 3 4 4 4 5 4 5 5 5 5 5 5 6 6 7 7
1 2 2 2 3 4 4 4 4 4 4 4 5 4 5 5 5 5 6 6 7 7 8 8
1 2 2 2 3 3 3 3 3 3 3 4 5 4 5 5 5 5 6 6 7 7 8 8
1 2 2 2 3 3 4 4 4 4 4 4 5 4 5 5 5 5 6 6 7 7 8 8
1 2 3 3 4 4 4 4 4 4 5 5 6 5 6 6 6 6 6 6 7 7 8 8

Notes: This figure shows gender grade assignments for each value of λ <= 0.5 from a baseline
model without industry effects. To increase readability, only the smallest λ that yields each
unique set of grades is retained. The horizontal axis reports this λ and the corresponding value
of 1/(1 + λ), which is the implied posterior threshold for pairwise ranking decisions. Firms are
ordered by their rank under λ = 1, when each firm is assigned its own grade.
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Figure F10: Gender: All firm grades (industry effects)

0.0
0 (

1.0
0)

0.0
1 (

0.9
9)

0.0
2 (

0.9
8)

0.0
3 (

0.9
7)

0.0
6 (

0.9
4)

0.0
8 (

0.9
3)

0.0
9 (

0.9
2)

0.1
9 (

0.8
4)

0.2
0 (

0.8
3)

0.2
8 (

0.7
8)

0.3
0 (

0.7
7)

0.3
2 (

0.7
6)

0.3
6 (

0.7
4)

0.3
7 (

0.7
3)

0.3
8 (

0.7
2)

0.4
3 (

0.7
0)

0.4
4 (

0.6
9)

0.4
7 (

0.6
8)

0.4
8 (

0.6
8)

0.5
0 (

0.6
7)

 (implied threshold)

1
3
5
7
9

11
13
15
17
19
21
23
25
27
29
31
33
35
37
39
41
43
45
47
49
51
53
55
57
59
61
63
65
67
69
71
73
75
77
79
81
83
85
87
89
91
93
95
97

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
1 1 1 1 2 2 1 1 2 2 2 2 2 2 2 2 2 2 2 2
1 1 1 1 2 2 2 2 2 2 2 2 2 2 3 3 3 3 3 3
1 1 1 1 2 2 2 2 3 3 3 3 3 3 3 3 4 4 4 4
1 1 1 1 2 2 2 2 3 3 3 3 3 3 3 3 4 4 4 4
1 1 1 1 2 2 2 2 3 3 3 3 3 3 3 3 4 4 4 4
1 1 1 1 2 2 2 2 3 3 3 3 3 3 3 3 4 4 4 4
1 1 1 1 2 2 2 2 3 3 3 3 3 3 3 3 4 4 4 4
1 1 1 1 2 2 2 2 3 3 3 3 3 3 3 3 4 4 4 4
1 1 1 1 2 2 2 2 3 3 3 3 3 3 3 3 4 4 4 4
1 1 1 1 2 2 2 2 3 3 3 3 3 3 3 3 4 4 4 4
1 1 1 1 2 2 2 2 3 3 3 3 3 3 4 4 4 4 4 4
1 1 1 1 2 2 2 2 3 3 3 3 3 3 3 3 4 4 4 4
1 1 1 1 2 2 2 2 3 3 3 3 3 3 3 3 4 4 4 4
1 1 1 1 2 2 2 2 3 3 3 3 3 3 4 4 5 5 5 4
1 1 1 1 2 2 2 2 3 3 3 3 3 3 3 3 4 4 4 4
1 1 1 1 2 2 2 2 3 3 3 3 3 3 3 3 4 4 4 4
1 1 1 1 2 2 2 2 3 3 3 3 3 3 3 3 4 4 4 4
1 1 1 1 2 2 2 2 3 3 3 3 3 3 3 3 4 4 4 4
1 1 1 1 2 2 2 2 3 3 3 3 3 3 4 4 4 4 4 4
1 1 1 1 2 2 2 2 3 3 3 3 3 3 4 4 5 5 5 5
1 1 1 1 2 2 2 2 3 3 3 3 3 3 4 4 5 5 5 4
1 1 1 1 2 2 2 2 3 3 3 3 3 3 4 4 5 5 5 5
1 1 1 1 2 2 2 2 3 3 3 3 3 3 4 4 5 5 5 5
1 1 1 1 2 2 2 2 3 3 3 3 3 3 4 4 5 5 5 5
1 1 1 1 2 2 2 2 3 3 3 3 3 3 4 4 5 5 5 5
1 1 1 1 2 2 2 2 3 3 3 3 3 3 4 4 5 5 5 5
1 1 1 1 2 2 2 2 3 3 3 3 3 3 4 4 5 5 5 5
1 1 1 1 2 2 2 2 3 3 3 3 3 3 4 4 5 5 5 5
1 1 1 1 2 2 2 2 3 3 3 3 3 3 4 4 5 5 5 5
1 1 1 1 2 2 2 2 3 3 3 3 3 3 4 4 5 5 5 5
1 1 1 1 2 2 2 2 3 3 3 3 3 3 4 4 5 5 5 5
1 1 1 1 2 2 2 2 3 3 3 3 3 3 4 4 5 5 5 5
1 1 1 1 2 2 2 2 3 3 3 3 3 3 4 4 5 5 5 5
1 1 1 1 2 2 2 2 3 3 3 3 3 3 4 4 5 5 5 5
1 1 1 1 2 2 2 2 3 3 3 3 3 3 4 4 5 5 5 5
1 1 1 1 2 2 2 2 3 3 3 3 3 3 4 4 5 5 5 5
1 1 1 1 2 2 2 2 3 3 3 3 3 3 4 4 5 5 5 5
1 1 1 1 2 2 2 2 3 3 3 3 3 3 4 4 5 5 5 5
1 1 1 1 2 2 2 2 3 3 3 3 3 3 4 4 5 5 5 5
1 1 1 1 2 2 2 2 3 3 3 3 3 3 4 4 5 5 5 5
1 1 1 1 2 2 2 2 3 3 3 3 3 3 4 4 5 5 5 5
1 1 1 1 2 2 2 2 3 3 3 3 3 3 4 4 5 5 5 5
1 1 1 1 2 2 2 2 3 3 3 3 3 3 4 4 5 5 5 5
1 1 1 1 2 2 2 2 3 3 3 3 3 3 4 4 5 5 5 5
1 1 1 1 2 2 2 2 3 3 3 3 3 3 4 4 5 5 5 5
1 1 1 1 2 2 2 2 3 3 3 3 3 3 4 4 5 5 5 5
1 1 1 1 2 2 2 2 3 3 3 3 3 3 4 4 5 5 5 5
1 1 1 1 2 2 2 2 3 3 3 3 3 3 4 4 5 5 5 5
1 1 1 1 2 2 2 2 3 3 3 3 3 3 4 4 5 5 5 5
1 1 1 1 2 2 2 2 3 3 3 3 3 3 4 4 5 5 5 5
1 1 1 1 2 2 2 2 3 3 3 3 3 3 4 4 5 5 5 5
1 1 1 1 2 2 2 2 3 3 3 3 3 3 4 4 5 5 5 5
1 1 1 1 2 2 2 2 3 3 3 3 3 3 4 4 5 5 5 5
1 1 1 1 2 2 2 2 3 3 3 3 3 3 4 4 5 5 5 5
1 1 1 1 2 2 2 2 3 3 3 3 3 3 4 4 5 5 5 5
1 1 1 1 2 2 2 2 3 3 3 3 3 3 4 4 5 5 5 5
1 1 1 1 2 2 2 2 3 3 3 3 3 3 4 4 5 5 5 5
1 1 1 1 2 2 2 2 3 3 3 3 3 3 4 4 5 5 5 5
1 1 1 1 2 2 2 2 3 3 3 3 3 3 4 4 5 5 5 5
1 1 1 1 2 2 2 2 3 3 3 3 3 3 4 4 5 5 5 5
1 1 1 1 2 2 2 2 3 3 3 3 3 3 4 4 5 5 5 5
1 1 1 1 2 2 2 2 3 3 3 3 3 3 4 4 5 5 5 5
1 1 1 1 2 2 2 2 3 3 3 3 3 3 4 4 5 5 5 5
1 1 1 1 2 2 2 2 3 3 3 3 3 3 4 4 5 5 5 5
1 1 1 1 2 2 2 2 3 3 3 3 3 3 4 4 5 5 5 5
1 1 1 1 2 2 2 2 3 3 3 3 3 3 4 4 5 5 5 5
1 1 1 1 2 2 2 2 3 3 3 3 3 3 4 4 5 5 5 5
1 1 1 1 2 2 2 2 3 3 3 3 3 3 4 4 5 5 5 5
1 1 1 1 2 2 2 2 3 3 3 3 3 3 4 4 5 5 5 5
1 1 1 1 2 2 2 2 3 3 3 3 3 3 4 4 5 5 5 5
1 1 1 1 2 2 2 2 3 3 3 3 3 3 4 4 5 5 5 5
1 1 1 1 2 2 2 2 3 3 3 3 3 3 4 4 5 5 5 5
1 1 1 1 2 2 2 2 3 3 3 3 3 3 4 4 5 5 5 5
1 1 1 1 2 2 2 2 3 3 3 3 3 3 4 4 5 5 5 5
1 1 1 1 2 2 2 2 3 3 3 3 3 3 4 4 5 5 5 5
1 1 1 1 2 2 2 2 3 3 3 3 3 3 4 4 5 5 5 5
1 1 1 1 2 2 2 2 3 3 3 3 3 3 4 4 5 5 5 5
1 1 1 1 2 2 2 2 3 3 3 3 3 3 4 4 5 6 6 6
1 1 1 1 2 2 2 2 3 3 3 3 3 3 4 4 5 5 6 6
1 1 1 1 2 2 2 2 3 3 3 3 3 3 4 4 5 5 5 5
1 1 1 1 2 2 2 2 3 3 3 3 3 4 4 5 6 6 6 6
1 1 1 1 2 2 2 2 3 3 3 3 3 3 4 4 5 6 6 6
1 1 1 1 2 2 2 2 3 3 3 3 3 3 4 4 5 6 6 6
1 1 1 1 2 2 2 2 3 3 4 4 4 4 5 5 6 6 6 6
1 1 1 1 2 2 2 2 3 3 4 4 4 4 5 5 6 6 6 6
1 1 1 1 2 2 2 2 3 3 4 4 4 4 5 5 6 6 6 6
1 1 1 1 2 2 2 2 3 3 4 4 4 4 5 5 6 6 6 6
1 1 1 1 2 2 2 2 3 3 4 4 4 4 5 5 6 6 6 6
1 1 1 1 2 2 2 2 3 3 3 3 4 4 5 6 7 7 7 7
1 1 1 1 2 2 2 2 3 4 4 4 4 4 5 6 7 7 7 7
1 1 1 1 2 2 2 3 4 4 4 4 4 4 5 6 7 7 7 7
1 1 1 2 3 3 3 3 4 4 5 5 5 5 6 6 7 7 7 7
1 1 1 2 3 3 3 3 4 4 5 5 5 5 6 6 7 7 7 7
1 1 2 2 3 4 4 4 5 5 6 6 6 6 7 7 8 8 8 8
1 2 2 2 3 4 4 4 5 5 6 7 7 7 8 8 9 9 9 9
1 2 2 2 3 4 4 4 5 5 6 7 7 7 8 8 9 9 9 9

Notes: This figure shows gender grade assignments for each value of λ ≤ 0.5 from a model
with industry effects. To increase readability, only the smallest λ that yields each unique set of
grades is retained. The horizontal axis reports this λ and the corresponding value of 1/(1 + λ),
which is the implied posterior threshold for pairwise ranking decisions. Firms are ordered by
their rank under λ = 1, when each firm is assigned its own grade.
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Figure F11: Race report card using alternative industry codings
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Charter / Spectrum (73)Dr Pepper (51)Kroger (54)Avis-Budget (75)Ryder System (42)FedEx (42)Waste Management (49)Mondelez (20)Sysco (51)Hilton (70)Kohl's (53)J.B. Hunt (42)Lowe's (52)XPO Logistics (42)McLane Company (51)AECOM (87)Publix (54)Sears (incl. repair / auto) (75)Sherwin-Williams (52)Lab Corp (80)Target (53)WestRock (51)Geico (63)Performance Food Group (51)US Foods (51)Dollar General (54)Kindred Healthcare (80)US Bank (60)KFC (58)Tyson Foods (51)Ulta Beauty (59)TJX (53)UnitedHealth (63)United Rentals (73)Olive Garden (58)Home Depot (52)International Paper (24)Starbucks (58)Honeywell (50)Hertz (75)Universal Health (80)Safeway (54)Quest Diagnostics (80)J.C. Penney (53)Macy's (53)LKQ Auto (50)Bed Bath & Beyond (57)Nordstrom (53)Cardinal Health (51)Foot Locker (56)Murphy USA (54)Edward Jones (62)Dillard's (53)Walmart (53)Pizza Hut (58)Republic Services (49)Victoria's Secret (56)Dollar Tree (53)Marriott (70)Bath & Body Works (57)JPMorgan Chase (60)Walgreens (59)Cintas (23)Gap (53)Ross Stores (53)Tractor Supply (51)PepsiCo (51)Dick's (59)Aramark (73)Best Buy (57)Comcast (48)AT&T (48)CBRE (63)UGI (49)Estee Lauder (24)DISH (57)Ascena (Ann Taylor / Loft) (56)Rite Aid (59)Dean Foods (51)VFC (North Face / Vans) (23)Nationwide (63)Disney (incl. stores) (59)State Farm (63)Stanley Black & Decker (24)GameStop (59)Builders FirstSource (24)Jones Lang LaSalle (56)AutoZone (55)CVS Health (59)Costco (53)Pilot Flying J (55)CarMax (55)O'Reilly Automotive (55)Goodyear (55)Advance Auto Parts (55)Genuine Parts (Napa Auto) (55)AutoNation (55)

Notes: This figure shows posterior mean proportional contact penalties for distinctively Black
names, 95% credible intervals, and assigned grades from the industry random effect model.
Grades are shown for λ = 0.25, implying an 80% threshold for posterior ranking probabilities.
Posterior estimates come from a model with industry effects using the same industry assignments
and groupings as in Kline, Rose and Walters (2022). Firms are ordered by their rank under
λ = 1, when each firm is assigned its own grade. Firms labeled with black text are federal
contractors, whereas firms in gray are not.
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Figure F12: Gender report card using alternative industry codings
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Ascena (Ann Taylor / Loft) (56)Nationwide (63)State Farm (63)CBRE (63)Kindred Healthcare (80)Aramark (73)VFC (North Face / Vans) (23)Comcast (48)Lab Corp (80)Foot Locker (56)Estee Lauder (24)Jones Lang LaSalle (56)Victoria's Secret (56)Edward Jones (62)Universal Health (80)Hilton (70)Marriott (70)Republic Services (49)GameStop (59)Quest Diagnostics (80)Ulta Beauty (59)Gap (53)Charter / Spectrum (73)Rite Aid (59)FedEx (42)Walgreens (59)International Paper (24)J.C. Penney (53)Performance Food Group (51)TJX (53)Ross Stores (53)Dean Foods (51)Geico (63)CarMax (55)PepsiCo (51)Sysco (51)United Rentals (73)Kroger (54)AECOM (87)Mondelez (20)Pizza Hut (58)Stanley Black & Decker (24)UnitedHealth (63)Dollar Tree (53)Bath & Body Works (57)Pilot Flying J (55)Waste Management (49)Cardinal Health (51)Dollar General (54)AT&T (48)Dick's (59)Dr Pepper (51)Lowe's (52)Ryder System (42)J.B. Hunt (42)Macy's (53)Tyson Foods (51)Bed Bath & Beyond (57)Dillard's (53)Cintas (23)Home Depot (52)Publix (54)US Bank (60)Murphy USA (54)Advance Auto Parts (55)AutoZone (55)Olive Garden (58)Best Buy (57)Kohl's (53)Genuine Parts (Napa Auto) (55)Walmart (53)DISH (57)US Foods (51)Nordstrom (53)Disney (incl. stores) (59)Safeway (54)Starbucks (58)XPO Logistics (42)Tractor Supply (51)McLane Company (51)Sherwin-Williams (52)KFC (58)UGI (49)O'Reilly Automotive (55)Target (53)WestRock (51)Costco (53)Sears (incl. repair / auto) (75)Avis-Budget (75)CVS Health (59)AutoNation (55)Hertz (75)Goodyear (55)JPMorgan Chase (60)Honeywell (50)LKQ Auto (50)Builders FirstSource (24)

Notes: This figure shows posterior mean proportional gender contact differences between dis-
tinctively male and female names, 95% credible intervals, and assigned grades from the industry
random effect model. Negative differences imply favoring female applications on average, while
positive differences imply favoring men. Grades are shown for λ = 0.25, implying an 80%
threshold for posterior ranking probabilities. Posterior estimates come from a model with in-
dustry effects using the same industry assignments and groupings as in Kline, Rose and Walters
(2022). Firms are ordered by their rank under λ = 1, when each firm is assigned its own grade.
Firms labeled with black text are federal contractors, whereas firms in gray are not.
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